
1 



Title: Modular composition environment: A tool for 
improvisation of conventional electronic music.

Author: Joaquín Aldunate Infante

Thesis advisor: Koray Tahiroğlu

Thesis supervisors: Teemu Leinonen, Markku Reunanen

Submission: October 2018, Espoo, Finland

Program: Masters in New Media Design and Production, Aalto 
University

Last revision: 2020-a

2



1 Table 
of contents
1 Table of contents 2

2 Abstract 6

3 Introduction 8

3.1 Motivation 9

3.2 Theoretical framework 9

3.2.1 Affordance 9

3.2.2 Linear and divergent thinking in music 10

3.2.3 Different cultures around live electronic music 13

3.2.4 Differentiation between experimental and conventional music
16

3.2.5 The concept of music solo act in electronic music 17

3.3 Musical devices and their performance paradigms. 18

3.3.1 Gestural-mapping based tools 20

3.3.2 Sample based performance tools 22

3.3.3 DAW-control based tools 23

3.3.4 Modular performance tools 27

3.3.5 Live-coding performance tools 29

3.3.6 Conclusion 30

3.4 Thesis statement 31

4 Development & production 32

4.1 Outline of the design process 33

3



4.2 Definition of the design concept 33

4.2.1 The three domains: environment, system and music 34

4.2.2 Event-messages as a communication medium 38

4.3 Fundamental level explorations 40

4.3.1 Composite elements environments 41

4.3.2 Finding the primary elements of the environment 47

4.4 Development of Calculeitor 56

4.4.1 Networks 60

4.5 Exploratory iteration in the Virtual-Modular environment 72

4.6 Environment futures 78

5 Evaluation & discussion 90

5.1 Experiences performing with Virtual-Modular 91

5.1.1 Fukuoka-shi, Japan 91

5.1.2 Ääniaalto, Helsinki, Finland 91

5.1.3 Calculeitor party 93

5.1.4 Kaiku Pheromondo 94

5.2 Systems exploration 94

5.2.1 Introducing a drum kit 95

5.2.2 Polymeter 95

5.2.3 Held note 96

5.2.4 Skip-jump sequencer 96

5.2.5 Patternized arpeggiator 97

5.2.6 Toggling note 98

5.2.7 Progressive melody 98

5.2.8 Sequenced pattern routings 100

5.2.9 Feedback loop 100

5.3 Comparative assessment 101

4



5.3.1 Fluidity 101

5.3.2 Flexibility 103

5.3.3 Originality 105

6 Conclusion 108

7 Appendix 114

7.1 Usage tutorial: Calculeitor interface introduction 115

7.1.1 Button Names 115

7.1.2 General button functions in a module 115

7.1.3 Super-interactor 117

7.1.3.1 entering and leaving a module 117

7.1.3.2 connecting and disconnecting modules 119

7.1.3.3 deleting modules 120

7.1.3.4 creating modules 121

7.2 Usage tutorial: Your first performance 123

7.3 Usage manual: event configurator 128

7.3.1 Pre-configured events 128

7.3.2 About events 128

7.4 Usage manual: Sequencer 129

7.4.1 Recording 129

7.4.2 Creating and removing events 129

7.4.3 Choosing the event / layer 129

7.4.4 Changing the length 130

7.4.4.1 Traditional length adjustment 130

7.4.4.2 Folding 130

7.4.4.3 non-destructive folding 130

7.4.4.4 destructive folding (folding!) 131

7.4.5 Paging 131

5



7.4.5.1 Page buttons 131

7.4.6 Shifting the sequence 131

7.4.6.1 Compensated shift 131

7.4.6.2 play-head shift 132

7.4.7 Sequencer rate 132

7.5 Description of various modules in the Virtual-Modular environment
133

7.5.1 Preset-kit 133

7.5.2 Harmonizer 134

7.5.3 Mono-sequencer 136

7.5.4 Sequencer 137

7.5.5 Narp 139

7.5.6 Arpeggiator 139

7.5.7 Game of life 140

7.5.8 Clock based delay 141

7.5.9 Route-sequencer 141

7.5.10 Chord generator 141

7.5.11 Operator 142

7.5.12 IO MIDI 142

7.5.13 Clock generator 142

7.5.14 Bouncer 143

8 Bibliography & references 144

6



2 Abstract
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This production thesis sets out to create a tool for live improvisation of
music that allows musicians to create and modulate musical patterns in
real-time  and  reduces  the  need  for  pre-recorded  or  pre-sequenced
material. It starts by defining the scope of conventional electronic music
and then explores the shortcomings of current tools in relation to the
divergency of music making.

The project  is  based on the author’s  previous experiences  in  the live
improvisation  of  conventional  electronic  music,  and  thus  it  starts  by
surveying  the  currently  existing  tools.  After  that,  it  focuses  on  the
iterative  design  process  of  modular  environment,  taking  the  modular
synthesizer as a conceptual starting point. These processes led to the
development  of  composition  devices  which  are  expressed  through  a
hardware user interface, in a modular environment.

This project finds that the shortcomings in divergency of current music
improvisation tools come from the fact that musical modulations in an
improvisation tool are inherently limited by the available procedures of
any given system. While composition tools such as modular synthesizers
lack this limitation they do not have the discrete musical abstractions
required for conventional electronic music. The production project thus
focuses on the design of a modular environment that could permit re-
purposing  of  procedures  that  process  discrete  musical  events.  The
outcome of this project is a new performance environment that can be
used to generate more diverse improvisations of conventional electronic
music.
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3 Introduction
In this chapter, the whole context of the project is
explained, starting from the personal motivation of
the  author.  After  this,  a  theoretical  framework  is
established: the basic concepts are explained, so
that  it  is  possible  to  establish  the  intended
meanings  of  the  words  being  used  during  the
project. This leads to many distinctions that help
focus better the scope of this project into a very
specific domain. After this, the current state of the
art  is  analysed  by  showing  an  overall  map  of
current  ways  that  electronic  music  is  performed
live, leading to the discovery of the gap which this
project intends to solve or explore. The introduction
chapter ends with the statement of this gap, and
how it can be interpreted in terms as stated in the
theoretical framework.
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3.1 Motivation
For  some  years,  I  have  been  developing  the  ability  to  stage  live
performances of electronic dance music using various tools. These tools
have served well;  however,  a feeling of being limited by the tool  has
always been more notorious than my own impression of being able to do
something new with it. I would buy a tool expecting that it would help me
do something in my live performances, but there was always the same
problem. This forced to adapt my performances to the ways the tools
worked, while I was expecting it to be the opposite. Using performance
tools was disenchanting. (I have to admit, however, these imposed ways
of playing also taught me most of what I know about performing live.) At
the beginning, I set out to create a music-making tool of my own that I
could use in my live performances and to customize its behaviour in such
a way that I could perform improvised musical modulations that would be
otherwise impossible. The thesis work took me onto a slightly different,
more interesting path.

3.2 Theoretical framework
It is important to establish what it is being said when using certain words.
In  highly-specific  subjects  such  as  this,  it  may  happen  that  a  reader
comes with different definitions of certain concepts. In order to be able to
use these  words,  we need  first  to  establish  which  of  all  the  possible
meanings of that word is going to be used in this thesis. In addition to
this,  it  is  important  to  delimit  an  area  of  work  when  speaking,  for
example,  about  electronic  music.  This  is  why  in  this  theoretical
framework some remarks  are added in order  to  distinguish a specific
domain of  electronic  music  performances  among the vast  area which
such concept encompasses.

3.2.1 Affordance

In order to initiate a discussion about possibilities of musical devices, it is
necessary  to  introduce  the  widely  known concept  of  affordance.  This
concept is credited to Gibson, and it characterizes the relation between
an organism and its environment (You and Chen 2007). In the words of
Gibson,  “[t]he  affordances  of  the  environment  are  what  it  offers the
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animal, what it provides or furnishes, either for good or ill.” (Gibson 1979,
127) From the perspective of design, each object may or may not afford
different uses or relations to a user1. Although the affordance of, say, a
chair  includes sitting on it  for  a  human,  this  relationship may extend
beyond the initial design intention of the object, such as standing over or
throwing it.

The application of affordance to the design of complex instrumentation
puts this term into crisis, because according to You & Chen, affordance is
limited to what can be perceived without effort (You and Chen 2007, 25).
This  delimitation  derives  from Gibson’s  later  expansion  in  relation  to
perceptual processes. In these terms, the concept is useful for the design
of physical products because it  provides a clear way to evaluate how
easy it is to understand a product. Within the topic of development of
musical  instrumentation,  however,  it  will  be  necessary  to  ignore  the
latter  distinction.  This  is  because,  although  the  affordance  of  most
instruments is clear2, using the instruments musically do require further
mental effort than what is directly perceived. Let us take a Kaoss Pad as
an example: once it is turned on, all the interaction possibilities are clear.
The touch-pad displays moving lights which intuitively suggests touching,
the encoder also indicates that it can be rotated. The buttons are also
clearly push-able. How to use this tool musically, however, needs further
reflection: a musician needs to know what to plug into the unit’s input
and output terminals. The user also needs to be aware of the desired
BPM at which to run the unit. In order to use the unit effectively for its
function, it is necessary to go beyond what the affordance shows. In a
broader sense of the concept, however, it supports interesting views to
analyse a device in relation to higher-level actions such as composing or
looping. The term affordance, therefore, will not be relegated to what is
intuitive, but will also include what an object facilitates regardless of how
much it needs reflection or knowledge.

3.2.2 Linear and divergent thinking in music

Divergent

1 note that Gibson’s notion of affordance focuses on the relationship between
any animal with its environment. Within a design process, the animal to be
considered is most likely to be a human, and the most likely factor of the
environment is the object in question.

2 some examples: buttons are clearly push-able, decks are clearly spin-able.
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a: moving or extending in different directions from a common point
(“Merriam-Webster Dictionary, Definition of Divergent” 2018) 

In the field of psychology, divergent thinking is associated with creativity
in many studies. These works help build a richer idea of creativity. The
idea of divergent thinking can be credited to Guilford (Runco 2011, 400).
His intention was to highlight the relevance of creativity as an exertion of
intelligence (Guilford 1970). Among many other types of creativity, he
identified creative activities whose intended outcome is largest possible
quantity  of  solutions  as  “divergent  production”  (Guilford  1970,  159).
Guilford’s  work  appears  as  the  main  guiding  principle  for  a  concrete
definition of divergent thinking in Runco’s entry in the encyclopedia of
creativity (Runco 2011).

Guilford  formed  three  indicators  for  divergent  creativity:  fluency,
originality  and  flexibility.  Fluency  represents  the  number  of  ideas
provided by the test subject.  Originality represents the infrequency of
such  ideas  in  comparison  to  the  other  test  subjects,  and  flexibility
represents the conceptual difference among the ideas given by the same
subject  (Runco  2011,  401).  For  easier  reference,  Fig. 1  provides  a
graphical  representation  of  these  variables,  being  added one by one.
Fluency appears in the figure as the number of ideas, not needing these
to be varied. Flexibility appears as a varied and flexible group of  not
necessarily  original  ideas.  Finally,  originality  appears  in  Fig. 1
representing the application of the three factors. Note that the figure is
only for reference and not an accurate depiction of the three variables:
originality  can  only  be  assessed  across  different  test  subjects.  If  the
intention  is  to  create  a  tool  that  allows  a  more  divergent  musical
expression, these three key aspects of divergent thinking form a valuable
design focus.
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Figure 1: Representations of flexibility, fluency and originality

The  fluency, originality and flexibility definition for divergence is easily
transposed to the domain of music making. The Brocs thesis work sought
an idea of divergence in terms of musical outcome from a less informed
perspective (Aldunate Infante 2013b), yet bringing an interesting idea to
this discussion. As exemplified in Fig. 2, listening appears as the least
musically divergent activity, since the musical outcome cannot be altered
beyond subjective perception (e.g., focusing on an instrument, liking or
disliking). Composition, in comparison, is a more divergent activity, since
it consists on creating new musical pieces that did not previously exist
(Aldunate  Infante  2013b).  Any  musical  activity  could  be  theoretically
assigned to a range along this divergence axis, leading to the idea that
each  musical  practice  possess  an  inherent  level  of  potential  for
divergence. In other words, each musical activity or musical instrument
affords different  levels  of  divergence.  This  affordance,  or  divergence-
potential  which  is  inherent  in  an  activity  hereafter  will  be  termed as
divergency. The distinction being made, is between a divergence that is
the  responsibility  of  the  performer  of  the  activity,  and  the  derived
concept  of  divergency which  is  facilitated  by  the  activity  being
performed.  The  first  notion,  being  based  on  the  subject,  is  a  study
subject of psychology. The focus on divergency, however, is a subject of
design. This project will focus on this divergency, as the interest is not to
improve personal  improvisation skills,  but to produce a product which
affords divergent improvisation.
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Figure 2: Linear-divergent spectrum of musical activities, translated from
Aldunate Infante (2013b)

Non-divergent  activities  are  different  when considering  the  domain  of
psychology  versus  the  domain  of  musical  activities,  or  music  making
tools. In psychology, there are many other intelligence activities which
are not classified as divergent, according to Guilford (1970). The interest
of this project, however lies exclusively in the divergent production rather
than other activities such as convergent production or memorization. In
the terms that were defined above, divergency is defined as a single axis
variable that ranges from a narrow to a wide range of possible outcomes.
For  term  divergency,  linearity  will  be  used  as  the  opposite  term,  to
express  that  activities  of  less  divergency  have  a  narrower  scope  of
possible outcomes.

This thesis will be focusing in the ability to be divergent specifically in
live performances and/or live improvisations. The divergency of a musical
tool  really  is  a  variable of  potential  divergence,  since once a musical
piece takes place in a performance, all the other possible musical pieces
do not. Divergency, the potential for divergence, therefore, consists on
the created piece plus how many other pieces of music are not being
created,  but  are  possible.  Non-realtime  musical  activities,  such  as
composing, have a vast divergency. This is because the composer has
the opportunity to invest a time that is longer than duration of the piece,
whereas  a  live  performer  only  has  the  duration  of  the  piece  as  the
available  time  to  produce  it.  Whereas  a  composer  of  pieces  has  the
possibility  to  go  back  in  time  to  alter  the  piece  in  any  way,  a  live
performer can only alter the present, and with certain tools, the future of
the piece. For these reasons, there is little use in the design of tools for
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composition, but there is a need to design tools for live performance or
improvisation when it comes to the divergence of the musical expression.

3.2.3 Different cultures around live electronic music

Divergency is not a desirable value in every context. For instance, a non-
divergent  practice  such  as  singing  known  songs,  or  learning  to  play
composed  pieces  are  highly  valued  activities.  Music  as  a  collective
experience can be enjoyed in a  cover band concert  or a dance party
where pre-recorded music is played with minimum alteration. Uniqueness
and live-ness3, however, is appreciated in some electronic-music related
social contexts, as it will be discussed in the following section. All this
amounts to determining a social scope where a tool for divergent music
making is valued but currently limited.

Togetherness is  a concept that is  tightly related to the subcultures of
electronic  music,  around  which  there  is  an  on-going  discussion.
Sociologically, this concept is also termed as “solidarity” (Kavanaugh and
Anderson 2008). The term describes how, at electronic music parties, all
the participants feel like being an integral part of the group of people and
flow  of  the  party,  participating  in  solidarity.  The  discussion  is  about
whether this feeling of togetherness in dance music is a product of the
underground history of electronic music (Straw 1993), an effect of the
inherent characteristics of clubbing and the music (Reynolds 1999; Butler
2006, 72), or an effect of the use of drugs (Kavanaugh and Anderson
2008).  Anthropologists  like  Kavanaugh  and  Anderson  propose  other
sources  for  the  social  bond:  among other  reasons,  there  is  collective
dancing,  staying  up  late  at  night  in  groups,  and  collaborating  in  the
organization of events (Kavanaugh and Anderson 2008, 191). Arguably
this phenomenon is caused by the combination of all  these elements.
The fact however, where all the authors seem to agree, is the existence
of this  collective aspect in the experience of electronic music parties.
This  collective  aspect  is  relevant  to  the discussed topic,  as  it  will  be
discussed hereafter.

To the reader, it might appear that the formal characteristics of electronic
music have little to do with the emergence of solidarity. Electronic music,
nonetheless,  does  have  inherent  characteristics  that  foster  audience-
performer interaction or solidarity. James Andean & Alejandro Olarte in
Sound,  Music  and  Motion work,  assert  that  musical  predictability  and
danceability are related (Andean and Olarte 2012, 2). This idea is easy to
accept, since predictability is not exclusive to electronic music, and many
other  danceable  music  styles  across  history  possess  some  recurrent

3 The quality of music being produced live, in the stage.
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patterns (e.g., Foxtrots, Cumbia, Waltz, Salsa). This gives a reason why
collective  parties  have always  taken place around repetitive  music  of
predictable patterns:  predictability  permits  the dancing participants  to
know with certainty what are the upcoming musical events. Some styles
exhibit a more complex set of rules that requires study on behalf of the
performers  (e.g. Flamenco),  but  which  again,  are  aimed  to  make  the
future  musical  events  predictable.  Apart  from  allowing  dancers  to
synchronize their movements with the music, it also enables coordination
among dancers,  facilitating synchronicity  among the participants.  This
synchronicity  between audience and musician integrates the audience
into the musical process, leading to the idea of participating all together
in a collective event. In relation to laptop and IDM performers, Emmerson
(2007)  states  that  listeners  can  also  become an  integral  part  of  the
pieces themselves, which in many cases are intended to be a ‘symbiotic’
(Emmerson 2007) composition of the performer with the audience.

Another  inherent  characteristic  of  electronic  music  that  encourages  a
sense  of  participation  is  the  intertextuality  and  collective  production.
Electronic music is created from borrowed material, which implies a rich
intertwining of  content,  often  expressed  as  intertextuality.  Although
intertextuality  is  very  common  in  western  classical  music  (Vasquez
2016),  “[t]he  use  of  the  sampler  has  made  this  intertextuality  more
apparent, since a song can be created from the sequencing of snippets of
sound  as  well  as  from  recognizable  fragments  from  other  records.”
(Rietveld 1995, 2) This intertextuality is a natural consequence of the use
of recorded material  as an instrument.  The practice started with tape
reels  by  concrete  musicians  (Warner  2017,  17–55),  notably  Mauricio
Kagel’s  Ludwig Van which could be considered as the first remix ever
practised  (Vasquez  2016,  17).  These  derived  into  practices  such  as
deejaying  and  sampling  (Warner  2017,  89–169)  in  some  cases  still
recurring to tape-related techniques (Kirn 2011, 38, 46). Many cases of
current NIME research also search for augmented collaboration features.
Two examples of this are the  PESI Extended System (Tahiroğlu, Correia,
and  Espada  2013;  Parkinson  and  Tahiroğlu  2013)  and  Reactable
(Kaltenbrunner et al.  2006). It  is  very clear,  thus, that the concept of
collaboration is present at the roots of electronic music.

In addition to sampling, as Will Lynch explains; “it’s normal for artists to
pay other artists to execute their ideas in the studio, then downplay their
involvement later on, sometimes not crediting them at all. As a result,
many artists get credit for more work than they’ve done, or are even
capable of doing. The average listener is none the wiser.” (Lynch 2017)
This underlines that music production can be a participatory practice.
The  role  of  the  author  in  this  context  can  be  anywhere  between  a
composer and a mere connector of other actors. This further proves that
electronic  music  creation  is  a  collective  process,  which  further
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emphasizes the notion of the genre’s association with solidarity.

Dancing at  parties  of  electronic  music can either be characterized as
collective and participatory or as individual. If we compare a disco party
to one of electronic music, it will be noted that instead of finding dancing
couples, people are found dancing on their own (Butler 2006, 36), facing
the  deejay  or  performer.  This  can either  be  read  as  each  participant
having an individual experience with the music or, to the contrary, as
every  participant  taking  part  in  a  collective  experience.  Malbon,
highlighting the social role of music parties, suggests that an audience
which knows how to listen is an essential part of any music performance.
The  absence  of  such  audience,  according  to  Malbon,  renders  the
performance “useless.” (Malbon 2002, 82) Hilegonda Rietveld, as cited
by Butler (2006), underlines this further: “[i]t is only when played to and
interacted  with  a  dancing  crowd,  that  house  music,  as  a  medium,  is
complete.”  (Butler  2006,  13)  Additionally,  many guides  for  deejaying,
when not focusing in the technical part, will explain that a good deejay
will select its tracks according to the present audience (Walsh 2018). All
these assertions suggest that the experience of dancing in an electronic
music party is more a collective experience than a multiplicity of isolated
experiences.

Additionally,  the scarce use of lyrics,  has caused the discourse of  the
genre to be undefined, thus lending itself to a heterogeneous group of
people.

The crowd is unusually diverse as well. Teenagers from downtown
Detroit  mingle  with  suburban  kids  from  across  the  Midwest.  A
young  raver  in  a  wheelchair,  her  arms  covered  from  wrist  to
shoulder with plastic beads, spins about near a group of gay men. A
middle-aged  African-American  woman  in  a  jogging  suit  listens
intently  to  the music,  her  eyes  closed,  while  a  tour  group from
Amsterdam takes in the scene. People of all stripes, from all walks
of life, have come here to hear this music, yet they respond as a
group.  The beat  can not  only  be heard,  it  can be seen in  their
movements, and felt in their bodies. (Butler 2006)

A hip-hop song, with lyrics, must sing about something, and will portray a
political  or  moral  stand,  which  an  audience  may  sympathize  with  or
disdain. The case is the same with with pop-stars, whose aesthetics build
a very strong image of a particular social  ethnology. Electronic music,
however,  seems to offer a  broader  field  for  different  sets  of  personal
values.

One exception for this openness which needs highlighting, is a certain
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level of male sexism in the sub-culture. This can be seen in way that the
role  of  female  deejays  is  depicted as  special  or  non-normal  (Rietveld
2013,  8)  and  in  the  fetishized  representations  of  women  that  are
portrayed in the scarce times there are lyrics present. In addition to this,
as Denise Dalphond explains in an interview that was documented by
Peter  Kirn,  electronic  music  record  stores  are  very  male-centred  and
discourage the interest of women (Kirn 2011, 43). The same is the case
when it comes to the role of women’s musical interest in general: “In my
experience, men either assume you don’t[sic] know anything, or think
that your interest in music is hot and turn it into a sexual thing” (Kirn
2011, 43).

The term EDM is a contraction of  electronic dance music and is often
used  to  include  this  whole  genre,  one  example  being  “unlocking  the
groove” (Butler 2006). Under the term EDM, there are different notions of
live  performance  which,  for  the  purpose  of  this  project,  need  to  be
distinguished.  In a context such as deejaying, where the performance
material are pre-recorded music tracks, the predominance of the author
inverse to the one of the performer. According to Straw (1993), in the mid
1970s deejays started concealing the identity of the tracks being played
for  the  party.  Straw  claims  that  the  “credibility  of  dance  music’s
professional  culture  have  been  built  upon  an  investment  in  secrecy”
(Straw 1993). The credibility of the deejay is related to the non-disclosure
of the tracks. This intention to conceal might not appear as evident. In
some cases the intention of a performance is not the concealment of the
tracks, on the contrary, intentionally letting the audience recognize what
is being played. In the case of the deejay this idea would seem to make
the author role less prominent. In the case of live electronic music shows,
or  deejays  who  play  productions  of  their  own,  authorship  remains
prominent regardless of how recognizable the (instantiation of the) tracks
are. Whichever the case, be deejays who conceal their track listing or live
musicians  which  play  their  own compositions,  authorship  is  a  desired
feature of live shows.

Different accounts of electronic music history disagree about the value of
a musical piece being recognizable. Whereas in some accounts, such as
Peter Kirn’s (2011), the popularity of a certain musical piece is part of a
positive  feedback  loop  in  popularity.  In  contrast,  the  appreciation  for
white  labels seem  to  prove  the  opposite  true  (Hesmondhalgh  1998;
Straw 1993). Some EDM cultures seem to appreciate the familiarity of
the track, and expect deejay sets which are composed mostly of known
recordings.  Some  other  sub-cultures,  by  contrast,  expect  the
performance to be familiar in only style, but value its uniqueness.

This  difference  is  relevant  when  it  comes  to  whether  a  musical
performance intends to be divergent or not. Where some live shows tend
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towards a recognizable  reproduction of  the pieces  (since the value is
popularity),  other  performances  seek  to  be  unique  and  unrepeatable
(because  the  value  is  uniqueness).  This  thesis,  therefore,  is  focused
mostly on performances which seek uniqueness: this is where the idea of
improvisation  makes  the  most  sense.  It  is  also  possible  that
performances  of  recognizable  pieces  may benefit  from a platform for
improvisation to attain previously unseen versions over those pieces. In
both cases, the author as well as the performer emerge as prominent
figures in the performance.

3.2.4 Differentiation between experimental and conventional music

In a widely known comedic episode, Karlheinz Stockhausen listened and
criticized  some  tracks  of  more  popular  electronic  musicians  such  as
Aphex  Twin.  According  to  this  story,  Stockhausen  wrote  about  Aphex
Twin’s compositions:

“I think it would be very helpful if he listens to my work Song of the
Youth, which is electronic music, and a young boy’s voice singing
with  himself.  Because  he  would  then  immediately  stop  with  all
these  post-African  repetitions,  and  he  would  look  for  changing
tempi and changing rhythms, and he would not allow to repeat any
rhythm if it were [not] varied to some extent and if it did not have a
direction  in  its  sequence  of  variations”  (Witts  and  Stockhausen
1995, 32)

This story demarks a clear difference between the worlds of experimental
and conventional electronic music. Conventional music tries to satisfy the
need  for  rhythm  and  the,  perhaps,  hedonistic  lust  for  melodies  and
harmonies  composed  according  to  a  western  canon.  In  this  thesis,
conventional  music  is  distinct  from this  notion  of  experimental  music
which seeks to disrupt, or  work without conventional notions of music,
such  as  rhythm,  harmony  or  melody.  From  this  point  on,  the  term
conventional  electronic  music will  be  used  as  a  subset  of  electronic
music. Where in electronic music there is space for sound performances,
the limits of conventional electronic music are demarcated by the use of
conventional  musical  abstractions,  such  as  meter,  rhythms,  patterns,
loops, tones and scales. This delimitation somehow connects an ambit of
electronic music to the previously developed tradition of classical music,
rock, jazz, and so on.

This thesis project will focus on the more conventional styles of electronic
music.  For  experimental  electronic  music  and  experimental  music  in
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general the tools seem to be inherently sufficient. As explained, since
experimental music does not constrain itself with conventional rules, it
allows  the  use  of  any  object  as  musical  artefact,  and  the  object’s
affordances can represent the rules of the piece. In this sense, there is no
use in the invention of tools with enhanced divergency in experimental
music making since the selection of the tool forms part of the musical
composition process (Maraš 2011). In a case where this would not be
true, it would be necessary that the musical artefact is created by the
artist themselves, since the resulting musical piece, expectedly, would be
bound by original rules. In an experimental  music process,  henceforth
there would be no use for an electronic music tool, unless it is used in
ways for which it is not intended.

3.2.5 The concept of music solo act in electronic music

It is said that the appearance of the tape recording technology had an
impact  of  similar  magnitude  than  the  impact  photography  had  to
painting  (Warner  2017,  17).  The  capacity  to  record  sounds  created  a
philosophical instability around sound and music, creating a whole new
field of research and exploration. As suggested by Daniel  Warner,  the
appearance of a practical possibility can have an impact on matters such
as  the  meaning  of  natural  phenomena.  When  there  is  the  ability  to
record,  sound  events  can  be  re-contextualized  in  new  ways  (Warner
2017, Chapter 1). Recording techniques facilitated sonic productions by
individual artists, as for example, Pierre Schaeffer. The ideas behind early
musique concrete explorations with recorded material,  started gaining
acceptance by wider audiences while recording technologies infiltrated
popular  music  genres.  The  tape  reels  became standard  music  studio
equipment, normalizing the use of post-production. Consequently, music
that is composed on the basis of techniques rather than instrumental
performance started  emerging  organically.  In  the  80s,  with  the  many
developments  around  digital  instrumentation,  it  became  possible  to
record, alter and play sampled sounds at live stages.

While the role of a musician prior to recording technologies was crucial to
the existence of any music (because mechanical instruments do not play
themselves), after recording or rendering it is possible for music to exist
without  there  being  a  performer.  Given  this,  a  space  was  born  for
performances using music records, giving birth to the idea of a deejay.
This use makes enables a single person to facilitate the live presence of
complete musical pieces without needing a band. 

Among other techniques, a live music performance can be performed by
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a single person thanks to looping. A loop is a musical fragment (sampled
or  composed)  which  has  a  length  in  relation  to  a  musical  meter.  For
example, a musician could be working with two loops: one which is a four
beats  long  bass  melody,  and  another  which  is  a  sixteen  beats  long
sample of a drum pattern. A single musician can launch, stop and edit
these loops, which keep repeating. With an adequate user interface, it is
possible for a musician to perform in real-time a polyphonic piece.

These factors explain why most electronic music is played by a single live
performer,  and  why  many  tools  are  oriented  towards  allowing  solo
performances. Looping alone, however, has not been enough. Looping
tools now a days also integrate with options to produce modulations to
these  loops.  These  modulations  can  either  take  place  in  terms  of
acoustics  (e.g.,  signal  processing  effects,  re-sampling)  or  in  terms  of
composition  (e.g.,  duplicate  a  sequence,  shift  an  octave,  re-order  a
pattern).  This  is  particularly  true  with  tools  such  as  Ableton  Push  or
Maschine, where the machine allows multitimbral compositions; all to be
managed from a single user interface node. In this way, a variety of loops
can be produced from one source loop. The same has been true in the
case of deejaying, which is, in the vast majority of the cases, performed
individually.

3.3 Musical devices and their 
performance paradigms.
Thus far, divergency was defined in such way that allows a particular
description  of  musical  activities.  This  thesis  has  also  asserted  that  a
music-making  tool  which  affords  divergent  improvisation  could  be
appreciated in a certain musical ambit or social context. The last premise
that needs clarification in order to support the thesis, is related to current
tools and their divergency in live improvisation of conventional electronic
music. The following chapter explores the different ways that divergency
is  attempted in  live  musical  performances,  what  their  limitations  and
what their advantages. In other words, the process to follow defines the
state of the art in live electronic music improvisation. 

In  order  to  understand  the  broader  context  of  a  performance  tool,
different  musical  instruments  were  surveyed  to  understand  different
approaches toward live performance interaction. This provided both, with
an overview of  performance possibilities,  and with a categorization of
performance  paradigms.  The  categorization  was  not  performed  by
assigning instruments according to formal characteristics (such as shape,
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size, presence of buttons). That categorization, however useful for some
purposes,  would  not  provide a  notion  of  the  variety  of  techniques  to
perform  music,  but  with  an  atomized  gamut  of  similarities  and
differences among items. Furthermore, a categorization of different ways
to perform music is likely to have unclear boundaries, (Frey, Gelhausen,
and Saake 2011) defeating the purpose of this type of categorization. A
method was used, instead which led to a categorization more similar to
prototypes or exemplars (Frey, Gelhausen, and Saake 2011) where items
need not to be perfectly matching elements of a category, but be related
in such way that reflects that there are many features in common. In this
way,  rather  than  attaining  a  categorization  of  elements,  each
performance type obtains neighbourness to others.

Each of the surveyed instruments was taken as a proxy of their intended
performative  use.4 These  performative  uses  can  be  found  in
documentations  of  different  performers  using  these  tools  for  musical
performances. Their use can also be inferred from online documentation
and manuals. For each of the items considered, a reference was added
where it is possible to review their intended use, which can be seen in
the  appendix.  The  relations  between  instruments  was  explored  by
relating the found elements one to each other. These relationships are
established  by  intuition.  This  step  is  expressed  by  the  links  among
elements  in  Fig. 3.  By  following  this  method,  the  group  of  surveyed
techniques tend to form groups or neighbourhoods, which help discretize
the  conceptual  approaches  toward  musical  performance.  The  bigger,
blue  captions  seen  in  Fig. 3  give  name  to  these  groups,  and  each
element relates to each group to different extents.

A broad scope of electronic music performance instruments was selected
to compare and make groups, but the different nature of many of them
posed some challenges.  Korg  products  are  usually  unique and with  a
delimited  functionality,  such  as  the  Kaossillator.  This  makes  these
products  easy  to  place  into  a  category.  Some  groups  of  products,
however, needed to be considered as a single item, while other single
products needed to represent a whole category of similar products. One
example is the category of deejay controllers and decks: there is a broad
variety of products, each with some differences. For this case, the CDJ5,
was taken as the main example in representation for deejay consoles in
general. The piano, although not being an electronic music instrument, it
stands as a reference point between classical instruments and the ones
being analysed, as well as a proxy for mechanical instruments.

4 e.g.,  a  piano  is  intended  to  be  used  by  pressing  the  keys  albeit  some
musicians could use it in other unexpected ways such as touching the strings

5 A deejay deck and controller created by the brand Pioneer.
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Another  caveat  to  this  grouping  process  is  the  variety  of  different
relations between controllers and software. For instance, a performance
using an Akai APC40 is very different than one that uses an Ableton push,
despite  that  in  both  cases,  Ableton  is  the  intended  host  application.
Should  the  controller  be  taken  as  a  mere  access  point  to  the  host
application,  both  would  be  considered  to  be  the  same.  There  were
important differences between how the performance operates depending
on the controller, however, that needed to be taken into consideration.
The  decision  in  regard  to  this,  was  to  consider  the  controller  as  the
independent user interface, as if the host application would have been
integrated in it, and it was not accessible via another user interface.

As a last remark in relation to this process, it was necessary to consider
modular environments as a singular product. The most important case
that reflects this, was Euro-rack. Although Euro-rack is not a product but
a  standard  where  different  products  can  correlate,  the  system offers
many modules which do not work on their own, but as part of greater
systems, and it is also possible to find Euro-rack modules that could fit in
any group. In addition, there are self-contained modular systems such as
Reaktor or Reactable which could be used to build any other product, and
hence, fit in any group. In this case, if the different modules of the Euro-
rack environments were considered as singular items, it would make it
necessary  to  consider  virtual  modules  from  Reaktor  or  Reactable  as
separate items as well. Euro-rack and other modular musical tools offer
different user interface propositions more as a system than as individual
units.
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Figure 3: Intuitive grouping of music making tools according to how they are
performed

3.3.1 Gestural-mapping based tools

The  paradigm of  gestural  mapping  is  the  most  intuitive  approach  to
design and understand electronic music instruments, since it mimics the
relations  humans  have  with  mechanical  instruments,  while  taking
advantage  of  the  augmented  features  that  electronic  instrumentation
offers. One of the earliest electronic examples of this is the Theremin,
where  the  distances  between  the  performer’s  two  hands  and  two
antennas,  would  determine  pitch  and  volume  respectively.  The  logic
behind gestural mapping is that having a real-time sonic response from a
body action conveys the most intuitive interface for composition, which is
exactly the same as with mechanical instruments.

Three current examples of this paradigm in a controller, are the Owow
MIDI controllers (White 2018), AHNE (Niinimäki and Tahiroğlu 2012) and
Tommi Koskinen’s UFO controller (Koskinen 2015).  Their  main features
are  simplicity  and  granularity,  taking  advantage  of  the  “decoupling”
(Koskinen 2015) of the sound production from the action (Koskinen 2015,
9). One similarity among these two controllers, is that they offer specific
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mappings of a gesture to a musical parameter or event, assuming that
these will be combined with other expression interfaces. A less obvious
decoupling  shown  in  these  devices  is  between  the  user  interface
parameters  and their  association to  a  technical  aspect  of  sound.  The
unnamed  parameter  approach,  opposes  to  the  presentation  of
parameters  in  traditional  synthesizers,  where  gestures  (most  likely
knobs)  are  labelled  with  signal  processing  terms such as  low-pass  or
pulse-width.  Some  of  these  gestural  mapping  tools  try  to  encourage
intuitive use by removing the names of the parameters so that the users
rely more on their audition than sound synthesis related concepts.

Most of the high-end synthesizers work under gestural paradigm, given
that their design focus is on the sound design. The parameter controls
are relegated to the commonly used panel with knobs and keys. In many
cases, it is assumed that more advanced sequencing will be provided by
a sequencer using a control  input (e.g.,  MIDI,  CV, OSC). One extreme
example  of  this  are  the  Roland  Boutique  synthesizers,  which  do  not
possess their own keyboards, becoming, in a sense, modular.

The use of gestures as expressive input for musical performance offers a
broad spectrum of possibilities. For multitimbral composition, however,
more  than  one  performer  is  required.  Self-performing  devices  can  be
used as an aid to a single performer (e.g., sample looping, sequencing).
These types of device will be discussed hereafter. Speaking strictly of a
gesture-based  performance,  the  number  of  simultaneous  gesture
channels is limited by factors such as the number of limbs a person can
have,  and  their  capacity  to  coordinate  all  of  them  while  performing
independent voices. Although it is possible to use technology to capture
as  many  gestures  as  there  are  individual  muscles,  a  human  cannot
coordinate  many  different  gestures  without  memorizing  the  musical
performance at the muscular level. One early example of this are one-
man band performances, where the performer needs to learn the musical
routines  to  the  muscular  level.  The  limits  of  divergency  in  solo
performances using gestural  mapping tools are,  hence,  related to the
human motor coordination limits.

One  exploration  branch  which  combines  gestural  mapping  tools  with
code, can lead very appealing results. Musicians could produce custom
programs which handle all the details of composition and performance,
and somehow couple their body movements in meaningful ways to the
generated musical  piece.  In these cases,  the necessary equilibrium is
noticeably  delicate  between  the  sense  of  control,  the  perception  of
control,  the  improvisational  freedom  and  completeness  of  a  musical
piece.  A performance which is  very  complete musically,  and presents
many variation  may convey  the  feeling  that  the  musicians  are  really
following  with  their  gestures  what  the  program requires  them to  do,
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instead of them controlling the flow of music, as if they were making the
mimic of  playing a music  which is  already playing.  This  is  because a
highly complex piece with different modalities needs to recur to timed
events,  or  a  highly  rehearsed  choreography.  It  would  also  need  to
produce  more  musical  events  than  body  events  due  to  the  human
coordination limitations. If  the song presents this high complexity, but
the  tools  is  designed  not  to  require  a  trained  choreography,  it  may
convey the feeling that the performer is a mere producer of a random
seed  to  a  complex  algorithm,  because  there  is  no  obvious  relation
between movement and sonic effect. On the other hand, tools that map
gestures  into  sounds  in  a  very  direct  way,  as  to  make  this  relation
obvious (e.g. air drums) tend to become similar a traditional instrument,
not  leading  into  the  production  of  a  rich  piece,  thus  needing  the
integration  of  more instruments  or  performers.  An  excellent  example,
however,  that  may  have  attained  this  delicate  equilibrium is  Imogen
Heap’s performance with embodied controllers. In her demonstration for
Wire (Cornish 2013) she demonstrates the relations between gestures
and musical operations. In her demonstration there are examples of live
looping, gestural performance of instruments, and live tweaking of effect
parameters (Heap 2013). From this demonstration, it appears that her
generative  system  can  produce  a  wide  variety  of  music.  The
performance, however, still needs to be aligned within an intended track,
in a similar way to rehearsed instrumental music. Nevertheless, Imogen
Heap  demonstrated  an  interesting  approach  to  produce  musical
improvisation from gestures and prepared coding, which is an interesting
research possibility that needs a long exploration process.

Within conventional music, different levels of divergency are achievable
by groups which use gestural mapping paradigm instruments. This has
been exemplified by improvisational genres such as Jazz, or even in some
western classical compositions framed within the codas, the provision of
adequate  rules  for  improvisation  makes  it  possible  for  musicians  to
improvise while forming part of a group of performers. In these cases,
success  depends  on  knowing  the  other  musicians  and  also  the  rules
about how to perform.

The mentioned improvisational rules sometimes are provided by the style
itself, and arguably the structure of electronic music is enough as a rule
base for improvisation. For instance, full space for improvisation could be
given to a group of electronic instrumentalists, with the conditions that
each musician only perform within a  musical  role (e.g.,  drums,  leads,
pads) and that they perform musical brakes in relation to squares of 4
(e.g.,  a  small  break  every  four  measures,  and  a  big  break  every  16
measures).  A  music  improvisation  duo  called  Skinnerbox exemplifies
electronic music improvisation in groups, resourcing to gestural mapping
techniques among other techniques, as it can be seen in the (Hilgenfeld
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and  Gabbai  2017  Skinnerbox  Live  2017  video).  In  the  case  of
performances with more than one participant, divergency is provided by
a set of agreed rules, and the capacity for communication among all the
participants during the performance.

3.3.2 Sample based performance tools

Sample based performance of music and sound holds an important role
in the development of  electronic music,  most notably in the cases of
Musique concrète and the appearance of  deejaying.  These techniques
are  facilitated  by  the  ability  to  record  and  reproduce  the  recorded
material.  When  it  comes  to  live  performance,  the  two  predominant
techniques are looping: the repetition of a sound fragment, and playback.
Both of these techniques assume additional changes to the sample such
as superimposition, re-arrangement and application of sound effects.

The most frequent example of sample based techniques is  deejaying;
which lends itself for a wide range of divergency levels. It consist of the
playback  of  complete  musical  pieces  or  patterns,  and  intertwining  of
these pieces by superimposition. The sounds of the tracks can be altered
by  using  signal  processing  effects,  or  by  manually  rotating  the  vinyl,
changing the course of playback. In this way, recordings are treated as
tracks.  Live superimposition of  tracks may be done in more than one
way, the most obvious being a sound mix of both. Other examples is the
subtraction  and  mix  of  different  frequency  ranges  of  each  piece,  or
gating,  where  the  volume  of  each  the  two  superimposed  tracks  is
switched repeatedly and abruptly in a musical way. This can lead to very
divergent performances, where the tracks are completely denaturalized
by  re-contextualization.  The  techniques  can  also  lead  to  very  linear
performances where the tracks are presented as they are originally to
please an audience that reads tracks as social memes.

There are many examples of performances which combine acoustic and
gestural  instruments  with  looping,  as  a  way  to  produce  polyphony
without additional musicians.6 For these loop based performances, tools
such as Korg Kaoss Pad, Electro-harmonix 45000’s, Boss Loopstations or
Ableton are the most recurred. A loop based performance consists on
capturing sound patterns that have been produced in the live stage, and
reproduce these sounds in constant repetition or loop. When a sound is
looping,  the performer can proceed to record other sounds, which will
also be captured and looped. This method of performing can convey a
great  sense  of  live,  since  the  audience  can  spectate  the  gestural

6 Two examples  of  such performances are Beardyman (Foreman 2011)  and
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performance and henceforth understand the sources of all  the sounds
which they are hearing.

The attractive aspect of sample-based live performances is related its
limitations: the musical  score of a sampled sound cannot be changed
such way that remains sounding natural. For a fact, the bleeding edge of
sample-based modification is recurring to neural networks as a way to
trace back sounds to their generation algorithms, with the purpose of re-
synthesizing these sounds. Examples of this  is  the WaveNet (van den
Oord, Dieleman, and Zen 2016) and the Nsynth (“Nsynth Super” 2018).
But in a composition sense, these experiments are not really sampling
tools, but synthesizers that need to be played from notes, like regular
synthesizers.  Musicians  have  preferred  to  harness  the  unnatural
character of re-compositing with samples to produce dramatic effects.
Resampling for instance, is what determined, according to (Sullivan 2013,
1–3) the birth of  Dub Music. Among other examples, this can be heard
from nearly all the tracks of The Prodigy’s  Experience album (Howlett,
Abram, and Nakajima 1992) in their transposed piano chords, and pitch-
shifted  voices.  This  has been the case in  many other  styles.  Another
example is jungle music whose aesthetic was determined by the nature
of old funk drum solos in vinyl records (Butler 2006, 78), and distorted
character of reggae lyrics. Apart from the mentioned reference to this,
the phenomenon can be clearly listened in tracks such as  Super Sharp
Shooter (Pettit, Ford, and Redpath 2000) or Original Nuttah (Wahab Lafta
and Williams 2010) among many others. Sample based performance and
composition  remains  a  technique  with  limits  that  are  also  their
advantage.  Certainly  sample  based  music  can  only  offer  a  gamut  of
variation techniques that is delimited by the technical capacities of the
loopers and their sound-altering operations.

3.3.3 DAW-control based tools

Digital Audio Workstations –abbreviated as DAW– in most cases, share
some  design  attributes  and  a  workflow.  Over  this  paradigm,  each
different  workstation  offers  some  additional  improvements  to  the
workflow, while  keeping the ability  to compose music through a DAW
interface. The DAW workflow consists on having different channels, each
of which can contain effects, instruments or sound chunks, often named
samples. Each channel also possess a lane in a shared timeline, where
the  samples or MIDI events can be placed, as a way to compose the
piece. The most used interface for the programming of MIDI events is the
piano roll (Fig. 4). An alternative, but less intuitive interface is the one of
the  trackers  (Fig. 5),  where  the  raw  MIDI  data  is  presented  in  a  list.
Because of its wide adoption, the DAW design paradigm is also used in
the design of live performance tools.
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Figure 4: example of a piano roll interface

Figure 5: example of a tracker interface

Some DAW composition tools are a DAW in a literal sense. For instance
Native  Instruments  and  Ableton  have  developed  controllers  that  are
designed specifically to interface with their own computer-based DAW.
This  approach  takes  advantage  of  the  vast  computational  resources
contained in computers,  and combines this  with  a hardware interface
that  makes musical  interaction more fluid and live performance more
engaging.

The author of this thesis has been five years performing with Maschine.
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One  of  the  strong  points  of  Maschine is  the  hardware  quality,  which
allows a very fast and expressive input of musical performance. Maschine
can  be  used  as  a  musical  instrument  with  looper  capabilities.  The
interface allows a fast and expressive interaction: there are 16 velocity
sensitive  pads,  8  encoders  for  instrument  parameters,  and  certain
functions  for  tweaking  patterns.  The  software  design  in  Maschine,
however, bounds the gamut of possible transformations of the loop to a
narrow scope:  once  a  loop  is  recorded  in  a  track,  it  is  very  hard  or
impossible to access individual  events  and modify their  properties.  To
alter a loop, the easiest is to record it again from scratch, or to access it
by using the laptop’s interface. The tools for selection and modification of
events are very incipient and they do note allow a development of  a
sequenced loop into a similar one. It is important to note, though, that
Maschine has more pattern editing  capabilities  that  most  sequencers.
Given  that  Maschine  is  a  controller  for  a  computer  host  application,
however, more transformation capabilities would be expected.

Ableton has been the de facto tool for most of the conventional electronic
music  performers,  regardless  of  how  much  of  their  performance  is
prepared or played live. In the area of live performance, Ableton’s core
feature is to have many sound loopers which are tied together in timing.
In Ableton’s language, these loopers are called clips. These clips allow to
do an on-the-fly sound or MIDI recording, which will start playing as soon
as the record is stopped (“Ableton Manual: Using Push” 2018). Probably
one of  the most important  factors for its  success is  the fact  that  the
length of these clips adjust automatically to match the recording time,
but with a length quantization that is associated to the musical metric. In
most  of  the other  tools,  the length of  the pattern need to  be known
before recording. The push controller, alike other controllers for Ableton
possess a back-lit buttons grid interface. The use of button matrices with
as much as 64 buttons is perfect for use as sequencer interface (Arar and
Kapur  2013)  and  an  isomorphic  keyboard  interface  among  other
functions.

Push, being a mere controller of a tool that has been developed for a
couple  of  decades,  becomes  a  vast  library  of  functions  for  the
performance. In tune with the spirit of Ableton, Push intent is to make the
most fluent interaction that is possible with the composition. Push, like
Maschine  allows  tweaking  parameters  of  virtual  instrument  using  the
hardware’s  encoders,  whose  values  and  labels  are  represented  in  a
screen with correlated positioning. As Ableton push is much posterior to
the development of its host hardware, the mapping of parameters to the
interface  is  much  more  heterogeneous  than  most  synthesizers  and
controllers. In Maschine, for instance, each different virtual instrument
has well defined parameter to knob association. This results in a more
heterogeneous  user  interface,  which  affords  a  broader  range  of
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procedures to apply. 

It is not easy to track how the idea of using squares to play drums, would
become coupled to the idea of a tactile pixel. One early example of this
interface  is  the  Linn  9000 (Linn  2018)  which  seems  to  be  the  step
between  a  computer-keyboard  looking  interface  and  a  button  matrix
interface because it resembles both, a Linn LM-1 (Linn 2018) and an Akai
Mpc 60 (Linn 2018; and Warner 2017, 160). This can be understood as
the link that brought the interface, but this argument stands on an easily
refutable position. It can be asserted with confidence, however, that the
button  pads  have  become  an  important,  multi  dimensional  control
surface,  affording  a  high  bandwidth  of  input  and  feedback,  (using
colours, pressure, position, brightness, texts, among others) that can also
present  spatial  relations  (e.g.,  horizontal  time,  vertical  tone).  In  the
industry, clear examples of a trend started appearing such as Yamaha’s
Tenori-on or the Korg Kaoss Pad 2. Now a days, it seems that any live
improvisation  hardware  will  implement  this  type  of  interactive  pixel-
buttons.

Novation’s work with matrix-based composition has been very important
to the culture of live conventional electronic music instruments. Circuit
synthesizer culturally inherits from Ableton because the interface design
of circuit inherits from Novation’s Launchpad. With Launchpad, Novation
was  very  successful  in  the  exploration  of  a  user  interface  that  relies
entirely on a back-lit button matrix, and Circuit is a later, more evolved
realization  of  that  initial  interaction  concept,  now  as  stand-alone
composition interface (“Circuit User Guide” 2017, 5).

If the power of a computer can be scaled down to the size of a cellphone,
it makes sense to create a computer-hosted DAW whose host computer is
an embedded processor.  Novation  Circuits  are  precisely  this;  a  set  of
digital sequencers with a dedicated digital sound engine and computer.
The user interface of the circuit is also matrix composition, thus having a
synthesizer  with  flexible  composition  interface  similar  to  the  one  of
hosted  DAW’s.  Circuit  family  comprises  Mono  Station (“Circuit  Mono
Station” 2018) and  Circuit (“Circuit” 2018), although it is possible that
many new products appear under the same concept.

Some  tools  simulate  the  situation  of  a  DAW,  with  more  limited
possibilities to facilitate performance. Such is the case with the  groove
boxes. These present a limited set of sounds of different varieties, each
one on a MIDI track. The design approach of the groove boxes afford the
composition of full pieces integrating drums and synthesizers or samples,
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and are focused toward live performance of music. Most groove boxes,
such as the Electribe, have a sequencer which is very short in features
and  flexibility.  Playing  with  Electribe  consists  mostly  on  tweaking
parameters of the synthesizer voices, and by recalling prepared presents
from the library. Interestingly, it is this limitation what also brings some
insight  about  good  performance  tools:  dance  musicians  do  not
necessarily intend to improvise their performances, and a machine that
can recall presets is greatly appreciated in the context of dance music.

The use of groove boxes brings the MIDI protocol into topic. While MIDI
has  the  potential  to  integrate  many  synthesizers  and  sequencers
together  to  build  a  more  complex  instrument;  by  the  ways  it  is
implemented in most devices, its function is often relegated to the mere
synchronization  of  clocks.  As  it  can  be  seen  in  live  setups  such  as
Octave’s (Octave One Boiler Room Moscow Live Set 2014) among other
artists,  the groove boxes are used as pre-composed track sources.  By
using groove boxes or synthesizers, instead of getting a more complex
system, they only get many segregated sound sources which he can only
fade in and fade out, but not generate emergent features.

Given the power that is  harnessed from using personal  computers as
host, it comes as a surprise that not everything is possible with personal
computer hosted instruments. In a sense, these machines recreate the
ideal situation of a studio with unlimited synthesizers, all connected to a
single composition system. After analysing all these tools, the flaw of the
DAW paradigm seems to be related to the closed nature of design. This
idea is most clear with Maschine, where the performer finds a bounded
space of what is possible. The bounds of what is possible are defined by
the design decisions of the product. This is not a problem on its own,
since  every  system  needs  a  design.  The  problem  is  that  the  DAW
paradigm  does  not  offer  a  framework  where  original  features  could
emerge naturally from its use. All the  moving parts –plug-ins, samples,
patterns– of a DAW are confined to a space where they cannot transgress
its initial workflow.7 Instruments designed under the DAW paradigm offer
bounded options of divergence, and the bounds are defined their design.
In other words, they can only do the things for which there is a dedicated
procedure.

3.3.4 Modular performance tools

Reactable has been one of the most remarkable NIME’s in the last years.
It consists on virtual environment that works in a modular fashion. Apart
from the remarkable user interface, this instrument took advantage of

7 One example of this in Maschine, is not being able to add a midi effect or
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placing the image of the virtual environment’s interface in superposition
with  physical  objects,  whose  positions  were  tracked  back  into  the
environment by using machine-readable codes that they called fiducials.
This strategy effectively created an environment of augmented reality for
modular music composition (“Reactable” 2018).

Reactable  propose  interesting  ideas  about  the  emergence  of  an
environment from a computer system. This case presents a combination
of object recognition with basic projection mapping and software which
effectively affords modular composition. A similar attempt to do digitally
simulated  modular  composition  around  the  same  time,  is  Block-jam,
which  considers  a  signal  that  travels  through  the  different  modules,
generating sounds and getting diverted to different paths (Newton-Dunn,
H Nakano, and Gibson 2003).

A performance device which is modular-like is Squarp Pyramid. The most
remarkable feature of  this  sequencer,  is  the non-destructive  layers  of
sequence tweaking that  are present  such as scale,  and the ability  to
modulate parameters of the events in the same fashion as synthesizer
parameter  automation  (“Squarp  Pyramid  64-Track  Sequencer”  2016;
“Squarp Pyramid Sequencer User Guide” 2016). This allows effectively a
more  parametric  approach  to  music  composition,  which  implies  that
many  more  musical  modulations  are  possible  in  the  domain  of  the
pattern, than with other sequencers. 

The  idea of  a  modular  synthesis  is  almost  an inherent  part  of  sound
circuit design: it would be too challenging to design any functional circuit
without discrete components.  They developed gradually from research
laboratories such as Hermert Eimert and Werner Meyer-Eppler’s studio
(Warner  2017,  59)  where  increasingly  higher-level  sound  components
were needed, and it is generally understood that later they were brought
to massive audiences by Moog company (Warner 2017, 62; Pinch and
Trocco  1988).  There  have  been  many  developments  around  modular
synthesis options such as the Buchla’s synthesizers, the ARP 2600 or the
E-mu systems.  Now a  days,  perhaps  the  most  varied  and  developed
environment is the Euro-rack, for which new modules and techniques are
being developed every day.

Euro-rack environment as a music improvisation platform attains many
advantages over the other systems given its openness. Euro-rack in spite
of providing a sub-set of the possibilities that circuit design provides, has
some unique cultural and technical differences that relates it with very
open creative processes.  This  openness  is  granted due to  its  historic
independence from a musical or sound canon: Euro-rack standard is born
almost by accident with the design of the A100 module. Paraphrasing the
author of the system, one of the ideas behind the A-100 system is to
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allow the use of control signals to control any parameter, without limiting
this relation to specified types of signals (Doepfer 2018). According to the
I dream of wires movie, Doepfer’s Euro-rack is related to Don Buchla’s
concept of modular synthesis, which stood up for free experimentation
both, with the design of the modules, and the use of these musically
(Fantinatto 2014).  The casing and power supply of  the standard were
inherited from standard casings and power supplies that the designer
had in hand at the time, which is the “standard 19” rack system"(Doepfer
2018) standard for electronic cards (Groves 2016). The most distinctive
technical values of Euro-rack are voltage controlled parameters, discrete
higher-level sound circuits, a connector standard and a circuit board size
that enables a standard mounting system.

It is thinkable to consider conventional composition environments such
as Reaper or Ableton as modular. It is precisely the difference of Euro-
rack modularity against the concept of modularity on these, that make
the  inherent  characteristic  of  Euro-rack  modularity  to  stand  up.  For
example, in the composition environment of Ableton, there is modularity
because  many  plug-ins  can  be  used  in  different  orders  and
configurations, in ways were not specifically designed, relying in a host-
plug-in  scheme.  There  is  also  the  possibility  of  plugging  different
peripherals  for  user  input  or  output.  In  contrast,  the  concept  of
modularity of Euro-rack consists on a standard of control voltages and an
enclosure system that allows any module to take any role,  instead of
having a framework that leaves spaces where modules will  perform a
specific  role  (such  as  receiving  MIDI  and  outputting  sounds).
Furthermore,  the  Euro-rack  environment  does  not  provide  any
predesignated base such as a global clock, or master output. All of these
features are meant to be provided –or not– by the modules themselves.
For  instance  while  in  Ableton  a  composer  is  limited  to  one  clock  –a
necessary limitation for conventional music–, in Euro-rack it is easy to
have any amount of different clocks drifting away in their own paces.
“These definitions of the various signals, and the distinctions between
them –sound sources and modulation sources– are right in principle, but
a modular system like the A-100 often makes a mockery of them. In a
modular set-up, all of the modules produce voltages, and can be used as
control  voltages  or  triggers,  thus  blurring  the distinction between the
various types.” (Doepfer 2018) This type of modularity allows for a bigger
field  of  experimentation  possibilities.  Voltage  controlled  modular
systems, decidedly, present the users with the possibility of making their
own synthesizer  systems instead  of  only  presenting  the  possibility  of
making music directly. Effectively, a music tool making environment.

In the domain of computer-hosted modular environment there are also
modular  systems.  Some examples  of  this  are  Reaktor  and  Pure-Data.
These two work with lower level abstractions,  meaning that the usual
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operations done by each module are less complex, allowing the user to
create a wider variety of systems with it, by using a greater quantity of
these modules.  User-built  modules,  however,  can be used as modules
themselves; which accounts for a usage on a higher abstraction level.
These platforms provide the same type of homogeneous modularity as
modular synthesizers: signals can be re-purposed, same as some of the
modules.

This  homogeneous  modularity  is  an ideal  example  of  a  platform that
allows divergent exploration of music, because instead of having a gamut
of possibilities (as offered by DAW-based environments), we now have a
field of possibilities. Euro-rack, and analogue-modular music hardware in
general  allows  for  experimental  music  outside  the  boundaries  of  our
understanding of music, and this has been in general the place for this
environment. Clear demonstrations of this, are many modules that foster
stochastic  composition,  such  as  modules  that  would  capture
electromagnetic  noise (“Field  Kit-  Electro  Acoustic  Workstation” 2018),
modules that capture skin capacitance (“New Spikes Milk Edition” 2018),
and modules that compose random patterns (“RPG” 2018).

In  this  sense,  some  environments  that  claim  being  modular,  will  be
considered as non-modular in the scope of this thesis: one example of
this are the Roli Blocks (“Blocks: The Instrument That Grows with You”
2018)  which  despite  presenting  some  physical  characteristics  of
modularity, the composition method is actually based in a DAW or looper
model.  In  this  sense,  Roli  Block  modules  are  mere extensions  of  one
singular access interface to a single composition scheme; in the same
way that more than one Maschine hardware can also be connected to
control  one  single  running  instance  of  Maschine,  or  more  than  one
keyboard can be plugged in to one same DAW.

3.3.5 Live-coding performance tools

Programming has been clearly a successful  tool  to create solutions in
many  aspects  of  our  lives.  Every  object  that  possess  some  type  of
programmable data processor reflects that the object’s functionality was
better represented by computer code. The use of code is so pervasive,
that the current use of  analogue usually serves to refer to what is not
digital.

The line between modular composition and live coding composition is not
clear  when  it  comes  to  Virtual-Modular  composition  tools.  Native
Instrument’s Reaktor, although being graphically a modular environment,
possess some aspects that consider computer processing details which
relate the environment to a certain extent, to programming. Additionally,
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Pure-Data despite its  resemblance to a modular environment,  is  often
referred  to  as  a  graphical  programming  language.  Live  programming
performances, however, are narrowed down by McLean (2014) to “where
source code is edited and interpreted in order to modify and control a
running process.” (McLean 2014, 63) and most often is associated with
text-based coding.

Live programming in concept affords a vast divergency possibilities, even
within the area of dance music. One musical trend with this intention,
according to Daniel Dylan is the algorave, “[i]n essence, the aim is to put
programming at the forefront of the club experience, to present the act
of  live  programming  as  an  art  form  in  itself.”  (Dylan  Wray  2013)
Algoraver’s musical material that is presented as examples in this article
features synthesis, sampling and looping techniques.

Live coding for dance music is an interesting proposition, “but to date
algorave hasn’t[sic]  managed to  pair  the bedroom isolation of  coding
with the empathy and euphoria of communal club culture” (Dylan Wray
2013) there is  still  a  gap between coded music and clubbing events,
which perhaps can be filled with less idealistic programming abstractions
to be used in the live context  that would allow the creation of  those
euphoric music patterns. Apart from these, live programming is likely to
bring interesting new patterns to conventional electronic music genres.

3.3.6 Conclusion

Having  produced  different  discrete  categories  of  tools  for  musical
performance, it was possible to analyse the different ways these could be
used to produce divergent live performances. Although each individual
product within a category may offer different options for divergency, it
was observed that each performance has a defined area of divergency.
Coming back to Fig. 2, it is realized that there is not a single axis for
divergency. One example of this is the listening of music. In this graphic,
listening is not represented as a dot at the left of the spectrum, but as a
small range, since, it was assumed that it was possible for listeners to
alter their own experience of the musical piece by, for example, focusing
the attention on an instrument, or trying to reverse the order of strong
and weak beats. This divergency, however, is not achieved in a same
way than, say, a musical composition. The production of divergent results
in a listening experience is contained within a subjective experience, and
the production of  divergent results  in  composition,  has an effect  in  a
domain of sonic result. In the case of other activities, such as deejaying,
divergent  outcomes  may  not  easily  be  achieved  in  aspects  of
composition, but they can be achieved in terms of deejaying. In sampled
music, it is not possible to produce musical compositions in detail, but it
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is possible to improvise the sequence of tracks and their superimposition.
In the case of DAW based performances, whose objective is to provide
divergency  in  terms  of  musical  composition,  each  individual  DAW
controller offers different modulation options. However, it was found that
their divergency (in terms of musical composition outcome) needs to be
limited  by  their  design  specification.  Two  performance  paradigms,
however that did not have this inherent limitation, but only existed in a
practical  sense,  are the modular  and live programming environments:
while  it  is  virtually  possible  to  make  any  musical  performance  and
modulation from these types of system, there are some current practical
limitations.

3.4 Thesis statement
Regarding  current  tools  for  conventional  live  electronic  music,  there
seems  to  be  a  space  for  divergency,  in  terms  of  composition  and
transformation,  which  is  limited.  For  most  part,  dance  electronic
musicians  are  surprisingly  attached  to  performances  where  all  the
musical material is prepared beforehand. This provides them the ability
to  provide  any  musical  modulation  (since  it  was  carefully  composed
beforehand), and a safeguard against performance mistakes. However,
this  also  challenges  the  live and  collective sense  of  the  music
performance.  Often  the  live-ness  of  the  performance  is  relegated  to
tweaking of a sound parameter,  or a change on how many times the
same loop is repeated with respect to a studio version. Collectivity of the
performance, is often relegated to the mere fact of sharing the physical
and  sonic  space.  It  comes  as  a  surprise  given  all  the  available
technologies, that music making tools are still offering the musicians with
the same loop-based paradigms, with limited modulation algorithms. In
most cases, the improvised parts of musical performances need to be
very simple patterns within the constrained possibilities of a software.
This thesis intends to contribute with the production of one new mean of
satisfactorily  improvising  conventional  live  electronic  music without
needing  prepared  musical  material,  and  allowing  exploration  of
composition aspects at the performance time.

The topics explained to this point seem to avail the idea of a tool with
more  potential  for  divergency.  Theoretically,  such  tool  would  be  well
appreciated under the reading of some electronic music related value
systems such as the  underground electronic music genre and close the
circle  of  live-performance  versus  collectiveness  in  certain  contexts  of
electronic music performance. The key aspect to success to this project,
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therefore will be defined by divergency, affordance of composition, and
affordance to modulate this composition. Specifically on how the product
affords  fluency,  originality and  flexibility in  the  live  performance  of
conventional electronic music.
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4 Development
& production

This chapter explains the development process of
what will become the Virtual-Modular environment.
It  starts  with  an  outline  of  the  design  process,
where a reflection about the theoretical frame lead
to  the  fundamental  concepts  and  processes  that
will be used in the production process. In a sense,
the  definition  of  the  design  concept  works  as  a
theoretical  frame,  but  this  time,  it  is  established
with  a  specific  conceptual  solution  in  mind.  The
explorative  design  process  starts  from  the
fundamental  level,  meaning  that  it  creates  the
most  basic  rules  of  the  intended  music
environment.  During  the  development  of  this
project, two design processes took place in parallel:
the design of the Calculeitor controller, which is a
hardware  and  the  development  of  the  modular
environment, which is an idea that gets tested by
the  creation  of  the  Virtual-Modular  environment.
Relative to these items,  the idea of  the  modular
environment is  established  in  the  Fundamental
level explorations chapter; the development of the
hardware  is  explained  in  the  development  of
calculeitor chapter, and finally, the development of
the Virtual-Modular environment gets explained at
the  exploratory  iteration  in  the  Virtual-Modular
environment section. Finally, this chapter contains
a section where the potential of the design concept
is  explored,  as  if  its  development  was  sustained
more years in the future.
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4.1 Outline of the design process
Given that there are no known specifications for the end product, the
development of this thesis was based on iteration. Iterative processes
are very common in product development. They are inherently divergent,
consisting of a repetitive application of gradual changes to a solution.
Each  iteration  consists  on  design,  testing  and  evaluation  or  analysis
(Laurel 2003, 176) as displayed in Fig. 6. Following an iterative process is
a double edged sword because the scope of possibilities to be explored is
limited.  The  negative  aspect  of  this  is  that  the  method  does  not
guarantee  an  arrival  to  the  best  possible  solution  since  not  all  the
possible solutions can be by the heuristic. The positive aspect is that it
allows  the  creation  of  solutions  where  other  heuristics  could  take
potentially infinite time.

Figure 6: Iterative design process Laurel (2003), p.176
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4.2 Definition of the design 
concept
Examples of composition environments such as Pure-Data, Euro-rack, or
the mere idea of modular composition are based on a concept which is
interesting  to  this  project  as  mean  to  achieve  divergence  in  music
composition.  These environments  have served as tools  for  sound and
music experimenters to create sounds that were previously not possible
using  traditional  instruments.  The  initial  enthusiasm to  explore  these
sounds,  was because they were generated electronically  which was a
novelty.  The  fact,  however,  that  this  exploration  is  still  occurring  is
because  the modular  environments  allow the  users  to  construct  their
own synthesizers and composition systems. Hence, as a composition or
performance  paradigm,  modularity  offers  an  additional  dimension  of
divergency in comparison to mechanical instruments: the ability to alter
the  behaviour  of  the  instruments  in  real  time.  This  modularity  is
henceforth used in this project as the design core concept.

4.2.1 The three domains: environment, system and music

For a modularity to exist in the same sense as modular synthesizers or
programming languages,  environment is a crucial base concept. One of
the  first  ideas  that  comes  to  mind  by  the  mention  of  the  term
environment is the Earth’s  ecosystem, the environment of living things.
Organic living systems can only express in the context of the physical
world,  (Maturana  and  Varela  1980,  1994)  across  a  concrete  set  of
dimensions, and given the environment and the nature of the systems,
they are characterized by a certain set of rules. A living organic system
would not make sense, for example, as a computer program and vice
versa. In this  case the intention is not to refer to environment in the
sense of the musician’s presence in the ecosystem, as Waters (2007)
would. This accounts for a complete definition of a musical performance
as  species  that  live  in  an  ecosystem.  For  the  design  of  modular
composition systems, however, a broader idea of environment is needed
which is not limited to ecosystem. The idea of ecosystem, also conveying
the idea of a framework of interrelations between elements,  could be
considered like a particular manifestation of environment. This opposes
to Waters’s (2007) subordination of environment to ecosystem (where
environment is one of the parts that form the ecosystem). Environment
herein will be considered as a conceptual –or perceivable– system which
is capable of containing systems, allowing these systems and their parts
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to  interrelate,  and  provide  means  to  produce  and  organize  these
systems.  Under  this  concept,  henceforth,  ecosystem  is  one  possible
instance of an environment. This view of environment is shared within
the  field  of  computer  programming;  with  the  so-called  programming
environments,  which  incidentally  may the  second idea that  comes to
mind  when  thinking  about  environment.  Some  other  examples  of
environment are Euro-rack and Pure-Data, where a set of rules facilitate
the  emergence  of  synthesis  systems.  Furthermore,  it  is  possible  to
consider  the  domain  of  mechanical  construction  as  an  environment
which  facilitates  a  certain  gamut  of  musical  systems  (instruments)
among other things.  These last  three examples are mentioned at the
centre of the Fig. 7.

Environments therefore, are defined here as the means of production and
manifestation of a system. In the case of music, environments do not
directly create music8 but instead afford the creation of music making
tools,  as  for  example  a  particular  synthesizer  in  the  environment  of
electronics. This thesis will therefore refer to environment as a system
that is intended for the creation and use of other systems. Under this
definition,  examples  of  environment  include  programming  languages,
modular synthesizers and building toys. 

The design of a composition environment implies three different design
outcomes or design layers, as represented in Fig. 7. The last and least
abstract  layer  is  the  musical  outcome.  The  gamut  possible  musical
outcomes is delimited by the affordance of the music creation system.
This relates the musical outcome layer to the second layer: the design of
music making systems. The range of possible musical systems, again, is
limited by a lower layer. This brings us to the first layer, which is the
environment  design  itself.  Defining  this  three-layer  design  challenge
reveals  the  radical  difference  between  an  environment  design  and  a
music tool  design.  While  the design of  a music-making tool  affords a
number of musical  outcomes,  the design of  an environment,  allows a
number  of  possible  musical  outcomes  times  a  number  of  possible
musical systems.

8 As  an  illustration,  many  programming  languages  cannot  produce  music
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Figure 7: Three design and outcome layers

Each of these layers may be referred to as a different domain, meaning
that each layer can have a different set of terms, and each term can
have a different meaning depending on which domain is being analysed.
For  example,  deficient  user  interface feedback in  the musical  domain
does not  imply that  there is  a defective user interface in the system
domain. In practical terms, the system that is producing the music may
be very clear because the interface is representing it in an intuitive way,
but the way that this system is representing the musical outcome may be
inadequate. The environment will be developed upon the affordance of
programming languages and digital electronics, which are a perfect fit to
describe the intended discrete nature of the environment.

Having defined the concept of a three-layered musical environment, it is
now possible to outline the project’s  exploration process,  as shown in
Fig. 8. It is possible to start with known live-composition elements, such
as sequencers, and use them as modules. The ability of sequencers to
form  part  of  a  modular  network  is  proven  by  their  use  in  analogue
modular  environments.  In  this  case,  prototypes  of  sequencers  were
programmed in javascript, with the ability to exchange digital  signals.
This experiment revealed a method of how to break down composition
elements into  sub-units  that  can be used as building  blocks  to  many
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other  composition  modules.  Finally,  in  order  to  produce  meaningful
conventional  live  electronic  music  performances,  higher-level  modules
(building  blocks)  were  designed.  These  made  it  possible  to  create
improvised  music.  Each  of  these  stages  did  proceed  as  iterative
processes,  starting  from  a  preconceived  idea,  and  changing  in
accordance with testing.
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Figure 8: Representation of the environment design process as an analogy
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4.2.2 Event-messages as a communication medium

A strong reason for Euro-rack being a good tool for experimental sound
performances is its freedom from musical structures. This same reason,
however, explains the limitations of the same tool for the composition of
conventional  electronic music.  It  is  related to the type of abstractions
upon which these work.  The composer’s  overwhelming preference for
systems which are limited in divergency, such as DAW based solutions
(like Ableton or  Maschine) is  related to their  composition abstractions
being  based  on  conventional  musical  concepts  such  as  notes,
arrangements and chords.  Working with these abstractions makes the
composition of conventional electronic music easier. On the other hand
more divergent, modular composition environments possess continuous
abstractions  (e.g.,  voltage,  clicks,  transients).  With  modular  synth
environments,  expertise  is  required  to  achieve  musically  conventional
results.  One  example  of  this  in  the  Euro-rack  environment,  is  the
difficulty to achieve polyphony: while polyphony is a strongly expected
feature on conventional music, it can only be achieved by having many
copies of each analogue voice, or by using a digital synthesizer system.
Although  current  modular  sound  compositions  systems  can  achieve
musically conventional results, they are not designed with this function in
mind, and tend to make this task harder.

Other conventional music representation which is problematic by using
control-voltages,  is  notes.  Instead,  in  Euro-rack,  tone  (a  continuous
expression of frequency) is usually represented by a voltage on a scale of
one volt per octave (Doepfer 2018). This has the advantage of being able
to  represent  tones  outside  conventional  scales.  This  representation,
however, can become problematic when it comes to more conventional
compositions. In this case, physical effects such as thermal coupling or
electromagnetic interference could lead compositions to go out of tune.

When  it  comes  to  the  improvisation  of  more  conventional  music,  a
musician will need discrete events in order to represent abstractions such
as notes and scales. In particular, the communication between modules
needs to allow the coexistence of more than one information bit at a
time,  something  that  Euro-rack  modularity  does  not  allow  given  its
continuous,  analogue  electronic  signal  paradigm.  By  contrast,  the
parametric composition nature offered by Squarp Pyramid inspires the
creation  of  a  system  that  manipulates  musical  events,  with  a
communication protocol  similar  to  MIDI.  This  allows the  expression of
notes,  polyphony  multiple-voices  and  other  abstractions  of  a  discrete
nature. The task ahead consists of specifying a nature of this language
outside a strict standard like MIDI.
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A  concrete  example  of  the  frontier  between  event-composition  and
signal-composition can be observed in the Pure-Data environment. Pure-
Data contains two different types of signal that can propagate: one type
consists of values, symbols and bangs while other type are sound signals,
which  need  treated  differently  because  of  the  different  types  of
processing that each requires. In the context of Pure-Data:

[T]he thin [connections] . .  .  are for carrying sporadic messages,
and the thicker ones (connecting the oscillator, the multiplier, and
the output dac~ object) carry digital audio signals. Since Pure-Data
is  a  real-time  program,  the  audio  signals  flow  in  a  continuous
stream.  On  the  other  hand,  the  sporadic  messages  appear  at
specific but possibly unpredictable instants in time. (Puckette 2006,
17) 

A signal is a continuous stream of a continuous value or its simulation.
Examples of  signals  are  the voltage level  on any cable  of  a  modular
synthesizer,  a  sound  buffer,  or  the  position  of  a  knob  or  fader  on  a
control panel. An oscilloscope view of a possible signal is exemplified in
Fig. 9. An ideal signal represents with perfect precision the state of an
analogue output and is sustained for as long as the output remains in
that state. Real signals, however, are subject to problems such as radio-
frequency  noises,  thermal  coupling,  hardware defects,  resistance  in  a
cable  and  capacitance.  A  signal  is  therefore  best  suited  to  represent
events of continuity.

Figure 9: signal example
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An  event  that  occurs  at  a  moment  in  time,  containing  one  or  more
discrete  values  hereafter  will  be  called  an  event-message.  Some
examples of  event-messages include MIDI,  UDP packets  and telegram
messages. They are used most often to control discrete behaviours, such
as  states,  tones,  scales  and  metrics.  The  manifestation  of  event-
messages  is  numeric,  as  exemplified  in  Fig. 10.  An  event-message,
manifestation thus, will best represent events of discrete behaviour.

The distinction between event-messages and signals seems similar to the
distinction between continuous and discrete signals; these new names
were introduced to specify this distinction into the domain of modular
composition. For example, a Euro-rack clock signal could be thought as a
discrete signal, but for this case study such signal needs to be in the
category of signals.  on the other hand, with different eyes,  an event-
message  signal  could  be  considered  as  continuous  when  it  is  being
transmitted via wire. A need to specify the distinction needs to be made,
based  on  the  intention  of  this  signal  in  a  musical  environment.  This
distinction, as observed, takes a slightly different meaning than speaking
of continuous and discrete as an engineering or physical aspect.

The new distinction also allows for the definition of an ideal signal and an
ideal  event-message:  where  a  signal  ideally  spans  along  a  certain
amount of time to represent some value (such as envelope),  an ideal
event-message would happen in no time. This implies that, whereas a
signal defines a timed event in a continuous timeline, an event-message
divides time between before and after, ideally taking zero time. To make
distinctions between event-messages and Signals, the account is for the
intention of the signal rather than its actual continuous or discrete type.
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Figure 10: event example

The  concept  of  event-message  is  useful  to  this  project  because,  as
explained  before,  continuous  signals  have  served  for  divergent
composition  of  experimental  sound,  whereas  discrete  event-messages
can express conventional music abstractions. These conventional music
abstractions in the context of a modular composition system ultimately
are expected to allow a modular system to produce conventional music,
as it will be explored in the following chapters.

4.3 Fundamental level 
explorations
There were two preceding explorations done by the author which helped
set the interest for the present thesis. One of them, proposed the idea of
creating a musical building tool as an analogy to building blocks, called
Brocs  (Aldunate  Infante  2013b,  2013a).  This  exploration  opened  the
interest in musical composition as construction of systems, which led to a
second,  virtual  implementation  of  a  similar  nature  named  Licog
composer. The first, being a thesis project, led to a concrete product of
physical  nature.  The  second  project,  being  an  exploration  without  a
purpose, has less defined boundaries and was implemented twice using
Processing language,  and  later  one  incomplete  attempt  was  started
using javascript (Aldunate Infante 2014).

During these explorations, two naming conventions came naturally to the
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dialogue. Given that each component has inputs and outputs, modular
systems of this kind have an inherent direction. By the words down and
up, if referring to the order of signal propagation. A module  upper with
respect to one other module is meaning that the output of that module is
connected to the input of the refereed module. The same in the opposite
case: a module which is  down the patch, is receiving signals from the
refereed module. The same idea can be explained with the analogy of
parent and  child sequencers,  where  the  analogy  still  refers  to  the
hierarchy of connections in cases the up and down.

The mentioned building blocks represent the most basic components in
the ambit of conventional music, namely notes and discrete events. In
the  context  of  this  thesis,  the  environment  paradigm  where  each
component is a single sound event will be referred to as  molecular. By
developing  these  molecular  environments,  some interesting  emergent
features  were  discovered,  which  ultimately  motivated  an  ongoing
exploration.  Nevertheless,  a  hardware  version  of  such  device  is  still
commercially  challenging,  because  of  the  high  costs  of  having  many
copies of a micro-controller based component, and the difficulties that
pose interconnecting the necessarily  large quantity  of  these together.
This, together with the vast area that was left unexplored in the previous
experiences, are the reasons why the molecular paradigm remains as a
reference rather than a complete specification for the development of
this thesis project.

4.3.1 Composite elements environments

The  first  exploration  on  how  to  define  a  modular  composition
environment consisted in the design a module with the behaviour of a
sequencer  which  could  be  instanced  many  times  in  a  simulated
environment. The sequencers in this virtual environment had connection
nodes that allowed them to communicate. This module was largely based
on real life analogue sequencers, an important higher-level composition
device in most modular systems (e.g.,  Euro-rack, Moog Modular.).  The
difference  is  that  these  were  simulated  by  using  a  programming
language,  meaning that  all  the  sequencer  functions  and effects  were
digital.

In this exploration the interest was on the amount of different systems
that could be built with a small variety and amount of modules. Another
topic  of  interest  was  the  manoeuvrability  of  these  systems  from  a
composition  point  of  view.  It  was  not  important  whether  the  system
would comply with these metrics to the full extent, but rather whether it
would display a potential on those aspects. In other words, the idea was
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to  explore  with  very  basic  modules  in  order  to  imagine  future
development  directions.  In  addition  to  the  creative  exploration  it  was
interesting  to  note  different  design  challenges  that  emerge  naturally
from the idea of a modular digital system.

From that starting point,  many factors of their design were subject to
changes as they are adapted from an analogue to a digital environment.
One design challenge was defining which parameters need to be user-
defined, or what type of messages would them be exchanging, and how
they  would  react  to  these  messages.  The  intention  is  to  explore  the
possibilities  of  adding  modular  behaviours  to  a  sequencer  and
understanding how a module that can generate music on its own, can
also attain emergent features when they are taking part in a network.

Figure 11: representation of a mono-sequencer

A basic simulated environment for modular elements was programmed
using javascript. It defines a graphical user interface, and a module that
can be instanced multiple times, which gets graphically represented in
the  mentioned  interface.  It  contains  a  layer  on  top  that  defines
behaviours such as interaction, response to messages and user defined
behaviour options. The Fig. 12 is a snapshot of this javascript prototype.
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Figure 12: snapshot of the experimentation modular environment

The first exploration led to the idea of using a sequencer as an event-to-
event mapping matrix. The first prototype of a mono-sequencer treated
the  horizontal  axis  as  a  time  axis,  and  the  vertical  axis  as  different
voices,  making it a 4 voice, 4 steps sequencer. First,  these responded
sequentially to a global clock, and in a second attempt, their  play head
would only change in response to signals that would come programmed
from a parent  sequencer.  A  clock active setting needed to  be added,
however: if none of the sequencers is being triggered by a clock or a user
input, there would be no original event to propagate in the first place.

This configuration permits a sequencer to be re-purposed as an event re-
mapper: if a sequencer sends a [0,1,2,3] sequence, the child sequencer
would  play  as  a  normal  sequencer,  but  any  other  sequence  such  as
[3,1,2,1] will cause the child sequencer to play in non-sequential order
(as  illustrated  in  Fig. 13).  In  this  way,  the  lower  sequencer  matrix
becomes a matrix that maps input signals to output signals.

A usage example of this feature would be to create a palette of notes in a
scale that are sequenced by the parent sequencer. Or perhaps, a palette
of  chords.  It  already  presents  us  with  an  improvement  over  the
traditional sequencing approach because, if a musician wanted to change
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the harmony of a melody, instead of needing to reprogram every note on
each step, it would be possible to re-map the musical scale by changing
one event per tone. This approach also allows complete transformations
to  a  melody,  if  for  example  the  user  starts  mapping  all  the  child
sequencer events to a same note, while the parent sequencer is playing
a  sequence  with  many  distinct  notes,  and  then  start  adding  tonal
variations, thus obtaining a melodic progression which was not possible
before in most digital sequencers.

Figure 13: example: the sequence 0,1,2,3 is being remapped to 0,2,-,0, and
then to 1,3,-,1

Each  possible  sequencer  value  (vertical  axis)  of  these  sequencers
corresponded to a different output node. This permitted the route of an
event to change from one path to another depending on the step: an
effect similar to what can be done by using more than one analogue
sequencers, if they have dedicated step outputs (such as the Korg sq-
10).

Each of these sequencers has an id number that corresponds to the order
at which sequencer was created. An interesting emerging problem is that
some behaviours  may be different  depending whether  the connection
goes against the order of  the id numbers or with the order of  the id
numbers. To exemplify: if  sequencer n°2 is parent of sequencer n°1 is
against the id order, and the inverse order of connection would be with
the id order. This is because the id also dictates the order at which each
sequencer’s  internal  functions  are  processed  by  the  computer’s
processor. If each module is set to respond instantly to any signal, there
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is no big difference on the response regardless of whether the connection
goes  up or  down the id.  Only  makes  difference with  respect  to  what
output number each child is connected to similar to Pure-Data (Puckette
2006, 212). But if the modules are set to wait for a clock step to respond,
there will be a difference: if a connection goes  up the id number, upon
clock tick, the module will have already received the signal to which it
has to respond at clock time. If the connection goes down an id when the
clock ticks, however, the parent would have not yet sent the signal to
which the sequencer has to respond, and therefore, it will not respond
until the next clock tick, adding a delay. This problem resembles the one
of digital systems design, and is the reason why a processor that has
millions of transistors, cannot make more than one sequential operation
per clock tick (Vahid 2007), which is contrasted by how a sound signal
can  go  through  a  full  analogue  process  at  virtually  the  same  speed
electricity travels across the wire, as seen in  field programmable gate
arrays.

 

Figure 14: a. a — instant response generates a negligible time difference
regarding response up and down id’s.,  b — When elements are clock
bound, down-id connected elements will be one clock behind.

This is an interesting problem for which a solution is needed: if this was a
hardware situation, there would be no clear rule, because the elements
would not be updated progressively as in the computer simulation. The
result  is  that  instead  of  a  clear  timing  rule,  whether  the  response  is
delayed or not will depend on the tiny difference of time each processor
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takes to receive and respond to a signal.

The first proposition that was tried, consists in that a module, although
receives and reacts instantly to all  incoming signals,  it  buffers all  the
resulting signals into an output buffer, is set to be sent in the next clock
tick.  The  second  attempted  solution  consisted  on  processing  all  the
elements in two separate processes, in the same a software would treat
the drawing of graphic layers if it wanted to ensure that elements to be
drawn from an array, would be drawn in a different order than the one
specified by the array. The problem that emerges from applying the first
solution, is that the delay still happens, but in an even less intuitive way:
the delayed reaction that is caused by sending a signal to a module with
lower id number is relegated to that child module, making the cause of
the phenomenon less understandable. A similar behaviour results when
trying using the same type of buffer for the inputs instead of the outputs.
The second solution idea was applied by giving to  each element  two
signal queues: one queue for the incoming messages, and other queue
for the outgoing messages. Upon clock, all outgoing messages are sent,
and after clock, all incoming messages are processed, thus generating a
new set of outgoing messages, effectively generating a layering of time.
This approach generated a consistent behaviour of delaying the signal
propagation 1 clock per connection, as seen in Fig. 15.
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Figure 15: Demonstration of a consistently delayed signal by one clock per
connection

The  second  solution  mentioned,  however,  comprises  adding  a  whole
clock  delay  for  each node.  This  compromise  reflects  that  the  system
needs  not  to  be  intended  as  globally  clock  synced  except  for  some
modules that are clock-based, such as a sequencer. In a modular system
whose modules may need to be coordinated to a clock signal, to be two
distinct  types  of  processes  need  to  coexist:  the  processes  which
accumulate  tasks  until  the  next  clock  tick,  and  the  processes  which
respond  instantly,  regardless  of  the  clock.  In  this  way,  it  must  be
expected that signals flowing from one clocked device to another, will
obtain  a  delay in a way analogous to  micro-controllers.  Signals  going
through a non-clocked path, on the other hand, get processed as soon as
possible, in a way which is analogous to a field programmable gate array.

There are some other clear interesting features that suggest lines for
further development. For instance, by extending the capability of each of
these mono-sequencers to a complete sequencer, many other expressive
manipulations  would  be  possible  than  the  ones  offered  by  isolated
sequencers. One example is that the signal emitted from one sequencer
to another could be comprised of many numbers (in this exploration the
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communications were limited to single numbers) in such a way that a
static  message  could  be  transmitted  and  routed  through  many
sequencers. In these polyphonic devices, some bytes could be intended
as destination messages which dictate how to route and transform the
message, while some payload bytes may go through the whole patch
sometimes altered and sometimes forwarded until  a  destination (e.g.,
synthesizer). This will provide with a concept of multi-layered message
processing: one layer which determines the physical route taken by a
message,  and other  layers  that  determine the effect  of  this  message
once it arrives to the final destination. In this way one could use these as
modules as if they expanded a single sequencing interface9, and still be
able  work  with  them  as  modules  that  expand  the  capability  of  the
system, as in modular environments. 

4.3.2 Finding the primary elements of the environment

For  the  design  of  an  environment,  it  seems impossible  to  define  the
perfect specifications because it is unknown what the future elements, or
building blocks will  require from the environment to be possible.  Poor
definitions of  an environment could lead to excessive compromises in
versatility, and may disallow the existence of certain components. For
this, a particular iterative method was devised. This method allows to
discover the desired basic building blocks for any given environment that
aims  to  afford  the  creation  of  a  certain  set  of  systems,  and  by
consequence,  define  some generic  characteristics  of  the  environment
which host these building blocks. The use of this process led to a good
set of specifications that proved useful for the environment being sought.

Given  an  initial  set  of  systems  that  the  environment  is  supposed  to
enable, the method allows to break down these system into increasingly
basic  sub-units  until  left  with  a  minimal  set  of  different  units.  It  is
expected that the resulting parts can be used build any of  the initial
systems on the set. An example: if the objective is to make a system of
parts and pieces that could be used to build any transportation machine,
an initial set of systems would be a set of transportation machines. To
make this process iterative, the initial set of systems are not considered
any more like systems, but like units, which can be potentially made of
other sub-units.

The first step is to conceptually explode the current components, into
sub-components that permit building easily any of the initial components
(e.g.,  motors,  wheels).  This  is  what  appears  in  Fig. 16  as  the  divide
transition between components and sub components. If this was the only

9 alike Roli Blocks (“Blocks: The Instrument That Grows with You” 2018).
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step to be iterated, it would lead to a set of sub components that can
effectively build any of the initial set of components, but probably many
those components will be compatible with one and only one of the initial
components. This is why the second step consists on finding similarities
among those sub-components: one sub component may be adapted to
comply the same function as  two-sub components,  thus reducing the
amount of components and making each sub-component more general-
purpose. This also leads to a standardization in the way the components
connect  one  to  another,  which  leads  to  a  third  necessary  step:
homogenizing the ways to bind or connect those components together.
The third step could be thought as part of the second step in the sense
that  communication routines  can also be considered sub-components.
This  is  seen  in  Fig. 16,  in  the  arrow  that  points  down  from  the  sub
components.  Each iteration consists on taking the sub-components as
the new components,  and repeating the process,  as expressed in the
remaining arrow of Fig. 16. Doing this process for enough iterations lead
to a certain set of general-purpose components, and hopefully very few
components  that  are  specific.  The  interesting  part  is  that  using  the
general-purpose  components  that  result  from  the  operation,  new
components can be built  that extend the possibilities of the initial set
(Figs. 17, 18).
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Figure 16: graph of the iterative process

Figure 17: Example of emerging components
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Figure 18: Additional example of emerging components

It must be understood that this process can alter the characteristics of
the initial set of components, when they are built back from the resulting
base components. This depends upon what parts of the final components
are  required  to  remain.  Following  the  example  of  the  transportation
systems, the smaller set of resulting pieces,  can only be achieved by
overlooking  factors  such  as  appearance  and  energy-efficiency  of  the
resulting transportation machines. The same phenomenon is exemplified
with the playing card graphic icons in Fig. 19.

Figure 19: Example of changes in the initial components after the operation

Another caveat to the process, is that each component could have user-
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defined properties which change properties of the object. In this way, the
process  can  be  cheated  in  a  way  that  the  result  is  just  a  single
component that has so many configuration options, that it can cover any
functionality. In the example of the transportation systems set, it would
be like defining a block of metal as the base component, because it can
be machined and moulded in any way to generate different components.
Here the designer’s common sense must take a stance on how adaptable
each  component  needs  to  be,  according  to  the  desired  context  of
application.  For  some  cases  it  does  make  sense  that  a  component
changes role by using a user-defined parameter: for example a bolt-nut
component has the user parameter of how many turns to screw a bolt,
which is a perfectly reasonable user-defined parameter, while allowing a
wide gamut of  configurations.  For the current case of  musical  system
design with an eventual application to physical units that integrate many
of these components, there is a limit on tweak-ability, and the scripts
that  define  their  behaviours  should  be  simple,  and  as  monolithic  as
possible  avoiding  an  excess  of  user  input  interfaces,  or  switch
statements, for example.

The idea of molecular composition, as introduced in the Brocs and Licog
explorations, was an interesting starting point, although they needed to
be re-defined in many aspects for the purpose of this project. It is worth
exploring an environment for molecular composition, based on the idea
that an environment that can handle the musical  molecules will also be
able  to  sustain  any  other,  more  complex  modules.  Additionally,  the
molecular paradigms explored in the aforementioned experiences were
very limited in terms that the environment was specified only for global
musical  events,  meaning  that  resulting  musical  events  could  not  be
altered  once  emitted,  but  would  take  effect  instantly,  as  if  each
component  of  a  composition  would  have  its  own speaker.  A  different
environment  logic  is  required  to  build  a  modular  environment  with
endless possibilities in the same fashion as a modular synthesizer, thus
allowing divergence. Specifically, the best way to re-define the molecular
environment would be to proceed with a  buildification process using as
the initial set of components a  mono-sequencer,  an event-mapper, an
arpeggiator and a Licog.

With respect to the communication protocol, if there is anything quaint
on the way that a device is triggered, or about what a device outputs, it
would compromise the versatility and compatibility of future devices. A
good illustration, as always, is the Lego building block. By good luck or by
a good decision, Lego has been able to keep innovating and creating new
pieces, and allowing the user to build a very wide range of things, while
still keeping compatibility with their earliest pieces. This quality depends
on that very first design of the mechanical joint that the first Lego block
had. To apply the buildification process in this prototype, a new modular
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environment  was  simulated  in  javascript.  To  this  environment,  a
sequencer and a Licog modules where programmed and instanced in a
way that  it  was  possible  to  use them in  connection.  For  each of  the
simulated components, its procedures were analysed as features or sub-
components,  in  order  to  merge or  split  them into  different  functional
units, or modules. According to the explained buildification process, the
intention  is  to  have  the  minimum  possible  amount  of  different
components that would allow building the maximum amount of the initial
set  of  components.  It  was  expected  that  from  exploding  these  two
components, it would later be possible to build other types of systems
such as arpeggiators, harmonizers, event mappers and so on.

To encourage modularity as suggested in the last exploration a global
clock  was  not  any  longer  used  (Fig. 20,  a).  This  out-ruled  the  Licog
modules  as  they  relied  on  the  global  clock.  However,  this  opens  the
question  of  how  clock-bound  (e.g.,  a  sequencer)  modules  could  be
triggered  in  an environment  that  is  exclusively  modular.  In  Pure-Data
environment,  any  signal  that  is  sent  also  serves  as  a  bang  which
determines when to propagate the messages. This leads to a frequent
need  for  modules  to  have  several  different  outputs  and  specific
operations. If there is a need for a module to wait for a clock signal in
order to propagate, a specially dedicated module or additional inputs on
each  module  would  be  needed  (Fig. 20,  b).  As  the  intention  was  to
homogenize the pieces and communication methods to the minimum, it
was defined that instead, a message contains a header number which
can be interpreted by each module depending on the module’s functions.
In  this  way,  the  distribution  of  the  clocks  becomes  modular,  with  no
requirement for a global clock bus. This allowed the existence of clock
messages as distinct from musical  event-messages,  and therefore the
connection between modules can be reduced to as low as one input and
one output, while still allowing several functions (Fig. 20, c).
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Figure 20: Three approaches to distribute a clock signal in a network of musical
devices

This idea was later reinforced by the modelling of a FIFO module, which
also  needed  distinct  functions  of  store  message and  send  buffer
messages. If  the functions were indistinct, it  would not be possible to
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delay messages as it is required to make a counter, and to make a Licog
module. 

Given that the messages are typed and not dependent of an input, the
clock message becomes a generic trigger message or bang which could
have been originated in any other way. More interestingly, it would be
possible for modules to manipulate a trigger signal into other type of
signal by simply altering its values. A simple module was devised which
would record any received message, except for a clock message. If  a
clock  message is  received,  the  currently  recorded message would  be
propagated to the next modules. This facilitates the creation of memory
and  delayed triggers.  This  module  later  derived  into  a  module  which
could  hold  any  number  of  event-messages  that  could  be  triggered
sequentially, in a first in first out (FIFO) fashion.

One of the most obvious modules, which was modelled at the beginning
of the experimentation was a module that could send a digital signal to
all of its outputs, once it received any signal on its input. After the idea
that clock signals were mere messages that were interpreted as clocks
by  a  module,  it  was  defined  that  this  signal  generator  module  could
actually be a signal modification module. This module could transform a
trigger event-message into a musical event-message or any other. The
module effectively operates one input signal for it  to become another
output signal. This module also could perform conditional operations as
to define whether the message is propagated or not upon conditions.

One module that emerged and disappeared during the process was a
multiplexer module. It was designed to send an incoming signal only to
the output that is indicated in the signal itself. The utility of this module
was  replaced  by  the  ability  of  operator  modules  to  have  conditional
functions:  by  using  many  operators,  it  was  possible  to  build  the
multiplexer.

During this process, most messages consisted of three bytes, making it
potentially MIDI compatible. Two, however, were enough for the extent of
this exploration: one number to select a function, and other number to
set a value. Any additional numbers would serve to specify more in detail
a theoretical note trigger. This led to the additional idea that messages
could be of variable length, in which case the header could also integrate
the definition of this length.

It  was  concluded  that  four  modules  could  describe  a  wide  range  of
composition  elements  such  as  a  sequencer,  an  arpeggiator,  a  Licog
element, and a harmonizer, between others.

• Input module: it converts any defined input into event-messages. its
only parameter so far defines which stimuli triggers a bang. In the
javascript prototype, so far, can only be either a clock pulse or the
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press of the space key. In a physical prototype it will  probably be
able to respond to hardware changes, and to any incoming MIDI or
message signal.

• operator  module:  it  performs  one  operation  for  each  byte  of  the
message. The operations can be arithmetic (e.g., adding one to the
second byte of the incoming message) or boolean (e.g., propagate if
a condition is  true),  making it  effectively an input filter (e.g.,  the
message passes only if the first byte is 0x80). The operator calculates
and propagates the input as soon as received.

• FIFO module: this module stores incoming bytes in an array, if the
byte header | 0xF0 equals 0x20, and sends + deletes the oldest byte of
the byte header |  0xF0 equals  0x00.  There are many other possible
headers  that  may be implementing  such as  getting  the  message
without  removal,  getting  all  the  messages,  getting  the  newest
message or getting a specific message by index.

• Output  module:  converts  bangs  into  output.  Depending  on  the
context, the output module may send a MIDI signal,  trigger a CV,
turn a light on or trigger a solenoid.

These modules would share a common, simple language of a string of
integers where:

• first byte defines the function of the message and each module has
a different set of reactions for each message header.

• There is a specific header for longer messages, and if the message
has this header, the component must wait for a closure byte to stop
reading the message. In such case, an escape character needs to be
defined which takes effect in the context of long messages, so that
sending any byte remains possible.
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specification of event-messages

This  current  idea  of  composition  elements  becomes  similar  to  the
implementation  of  Pure-Data,  were  modules  can  exchange  discrete
information, but in this case leaving away the continuous variables that
Pure-Data handles such as audio buffers. This idea of getting a sub set of
elements  from  the  Pure-Data  composition  environment  relates  this
project to Liam Goodcare’s context sequencer (Goodacre 2018), which
builds  higher-level  components  by  using  Pure-Data.  In  this  process,
however the intention is to generate an environment which is dedicated
to live composition, which includes the patching of modules through a
physical interface.
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Figure 21: 16 steps sequencer

The Fig. 21 above shows how a 16 step sequencer can be made out of
these components.  Licog units are also easy to implement with these
modules, as a signal can be stored in a FIFO until next clock, and send all
messages in FIFO on every clock to the next Licog. It is also possible to
build simple arpeggiators, scale mappers, and so forth. This definition of
basic  modules  satisfactorily  covers  the  domain  required  domain,
although the definition of notes-off and control messages remain as an
interesting future exploration.

Despite  the  idea  of  creating  a  set  of  hardware  micro-operators  that
replicate  this  environment  is  very  interesting,  as  a  project  it  will  be
necessary to focus on more complex, and more user friendly ideas of a
module. Modules built upon these modules are not easy to manoeuvre as
the built entity: a built sequencer, for instance, would not be user friendly
as presented in the picture, since changing the sequence length involves
changing the structure of the system. It is also interesting to note, that
given a definition of the environment that specifies the role of a module
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and the roles and characteristics of the messages, future modules can
also  contain  aberrations  of  the  resulting  basic  units,  without
compromising the compatibility with the rest of the environment, as long
as the inputs and the outputs belong to the same specification.

4.4 Development of Calculeitor

calculeitor design

When the development of the hardware started, there was no definition
of a module, neither a proposition of making a modular environment. The
interface  would  allow to  explore  the  dynamics  of  performing  with  an
environment that did not yet exist. The interface, thus, was based on the
widely  used  16  back-lit  buttons  matrix,  resourcing  to  parts  that  are
available in the market: a micro-controller, 16 button silicone keypad a
screen, encoder, and tact switches. The decision to work with 16 buttons
intended to facilitate the design process, taking into account factors such
as costs and time involved in the design of a mechanical interface. This
prototype herein is named x16, which reflects the 16 RGB LED’s which
uses. The design of a standard interface allowed early on to experience

68



performing  music  with  different  interaction  modes.  It  also  allowed  to
measure the capacity of different micro-controllers. Depending on how
the environment evolved, there would be a requirement to modify the
interface to allow these differences.

The very first prototype of this device was attempted using a Teensy,
because  of  its  music-related  capabilities  and better  processor.  Teensy
was discarded mainly because of the realization that the platform is not
open-source, and that the libraries were adapted to the Arduino language
in very inconvenient ways; specially regarding the pin address mappings.
The  immediate  following  step  was  using  an  Arduino  pro-mini,  and
expanding the number of pins by using multiplexers, and using Sparkfun
components for an easier build. In order to map the limited amount of
pins of the AtMega328 to the large amount of pins, a multiplexer was
added. This design was devised throughout many iterative sketches, of
which the Fig. 22 is an example. The amount of connections required for
this  prototype  caused  inconsistent  behaviours  in  a  prototyping  board
(Fig. 23),  because of  the complexity.  A printed board was designed in
KiCad and requested from a board manufacturing service,  in  order to
have a prototype of consistent behaviour.
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Figure 22: Sketch of the x16 prototype electronic design

While programming the firmware of this first version of the board, some
of the limitations of the hardware became clear. The Atmel Mega 328
processor has insufficient memory to handle all the necessary processes,
and the programming of the firmware takes too long time as to use it as
a  medium to  develop the  environment.  Also  the  user  interface  LED’s
were too dimly lit  and thus were not noticeable in places with strong
lighting. This happened because, being behind a multiplexer, the micro-
controller needed to scan through each led pin to create a persistence of
view effect.  It  was  decided to  use these as  controllers  to  access  the
computer simulation of the modular environment, and start developing a
more powerful  version of  the same device with  an Atmel  Mega 2560
which would allow truly persistent LED’s,  multi  serial  ports,  and more
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program memory.

Figure 23: development of the electronic schematic for the x16 prototype

The enclosure in this version, thus, was designed with enough space to
host a Raspberry Pi, which served as the main processor. The Raspberry
was connected via serial with the custom board, and it was programmed
to run a Node-Js service upon boot, allowing the device to start without
requiring screen or SSH access. Devices could be connected using MIDI
over the Raspberry’s USB ports, which are detected when the Node-Js
program starts. The Fig. 24 is a picture of one design sketch that was
used to design this enclosure, and the Fig. 25 is a picture of the result.
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Figure 24: x16 enclosure design sketch

Figure 25: x16 calculeitor prototype
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The  following  version  of  the  board  addressed  the  most  important
limitations  observed over  the last  prototype.  It  was designed with  28
buttons instead of the 20 buttons previous versions had, each of which
had  an  RGB  LED  (hence  the  name  x28).  The  most  important
improvement was the processor program memory available, the amount
of serial ports, and the intensity of the led lights. LED’s needed not to
rely  on  the  persistence  of  view  any  more  thanks  to  the  WS2812
component,  which possess a dedicated controller to store each colour
value.  The  first  prototypes  and  the  board  design  were  developed  in
Kyushu University (the Fig. 26 is a picture of one development prototype
for this version). Along with this new version of the board, the Virtual-
Modular environment was modified to be compatible with both boards.

Figure 26: Development of the electronic schematic for the x28 prototype

The enclosure of  this  version  were first  thought  as  build  from acrylic
sheets, because of the accessibility of laser cutting. Later it was realized
that bending and manufacturing in acrylic takes more labour per part
than  silicon  casting.  Many  different  approaches  were  modelled  in
parametric cad software, to speculate in detail about the cheapest and
most ecological options available.
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4.4.1 Networks

The design process  of  the networks  happened in  recurrence with  the
design of  the environment  because the design and interaction of  the
product is also involved in the mode of communication between nodes.
An example  of  this  is  that  if  the  network  is  point  to  point,  then the
expected interaction of the user involves patching the modules in the
same way as modules are patched in a Euro-rack system, mechanically.
Otherwise,  in a common bus network for instance, the user would be
expected  to  virtually  patch  modules,  as  they  are  all  already  fully
connected from the start.

The modular environment, in terms of network need a different set of
terms  since  the  roles  of  a  hardware  piece  need  not  to  necessarily
correspond in a one-to-one relation with the parts of the environment.
The  first  networking  term,  topology refers  how a  network  electrically
connects different devices to form a network. Also, an item that has a
distinct  identity  in  a  network  will  be  referred  to  as  node instead  of
module. Both, although in some cases are, they are not necessarily the
same  entity.  For  instance,  the  crucial  need  to  communicate  several
electronic  devices,  is  not  necessarily  parallel  to  the  need  to  connect
different  modules:  a  module  can  be  sharing  a  networking  device,  in
which  case  more  than  one  module  can  be  represented  by  a  single
network  node  from  the  point  of  view  of  the  network.  One  real  life
example of the device versus node difference is how a single computer
could represent two different IP’s in a TCP-IP protocol, and vice versa. In
this case, a computer could represent two clients while still being one
single node in terms of network.

The main challenge in inter-micro-controller communication is to create
an algorithm to prevent data collision. Data collision is when two nodes
need to send a message at the same time. A bus cannot support more
than one message at a given time, and a micro-controller cannot (or has
a limited capacity to) listen to more than one incoming message. This is
similar to spoken communications, where it is not possible to listen more
than one person speaking at the same time.

There  are  other  important  factors  to  take  into  consideration  when
designing  the  communication,  the  most  predominant  being  the
achievable data rate, because this determines the amount of interaction
that will be possible between units. The reliability of the network is also
crucial. The ratio of information that is lost against the total information
sent can be divided to form a data loss ratio. It should be 1 or very near.
Information can get lost mainly because the reception device may be
busy,  because  the  message  was  destroyed  due  to  noise,  or  because
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messages  from two  nodes  took  place  at  the  same  time  in  a  shared
communication line.

The previously mentioned factors are in tension with processing that is
required from each unit in the network, because the units need to do
other things than only communicate. If a network requires a highly active
participation from each node, the availability of the processor for other
tasks will  be reduced, increasing the processor power requirement for
each node.

Regarding to the topology of the network, the directionality is important:
many networks work in a paradigm of master to slave, which most often
is  implemented  to  a  hardware  level.  For  instance,  most  of  master  to
slaves network are connected using two buses, one where slaves use to
communicate to the master and other for the master to communicate
with the slaves. Networks which do not work under this topology, most
commonly  being  one-to-one,  meaning  that  only  two  nodes  can
participate at any given time Fig. 27. For a network that intends to allow
a heterogeneous interconnectivity, the most obvious scheme is point-to-
point. Under some circumstances, however, the ability to communicate
more than one node is a desirable feature of master to slave networks.

Figure 27: scheme of point-to-point networks
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The required network also needs the ability of hot swapping: consists on
being  able  add  and  remove  nodes  to  and  from the  network  without
disrupting the communications or having the new node ignored. This is
necessary since the environment is intended as modular and thus needs
to afford re-routing of the communications to change the composition
system.  Hot  swapping,  however  can  be  virtualized  in  cases  of  bus
networks, as it will be explained later.

The  modular  network  design  starts  with  a  careful  consideration  of
different communication options and their characteristics. The following
step consisted on iteration over different specific protocol ideas. These
were  sketched  in  detailed  drawings  of  the  topology  and  the  decision
trees. One of these sketches is shown in Fig. 28. Each topology can be
more  or  less  challenging  in  different  aspects.  It  can  be  generalized,
however, that for each possibility, different cases were put into test by
following the decision trees and their expected effects, checking if the
resulting device states could produce locked states or data collisions. The
most  important  cases  taken  into  consideration  were:  a)  a  device  is
powered up alone and then an additional device is connected, b) many
devices that are already connected are powered up all at once, c) one
device is disconnected from the network at run time, d) an event causes
a communication line to attain noise. From each one of these events the
network needs  be able to  recover  and keep the communications.  For
some protocols, specially the common bus based network cases, many
iterations  needed  to  be  performed  in  order  to  strategically  define  a
decision tree that does not get locked at any state.

76



Figure 28: Picture of one of the sketches where network types and topologies
were brainstormed

The first and primary type of possible network is point-to-point. The idea
of the point-to-point network is that each node is only aware of those
nodes whose inputs are connected to it. Other example is the software
Pure-Data. The most common point-to-point communication standard is
the RS232, which is similar to MIDI. The challenge with RS232 is that a
unit may need to receive signals from more than just one other unit and
point-to-point networks require one dedicated transceiver for each input
or output.  AtMega2560 luckily  has four  RS232 pair  of  pins  that  could
permit  this  use.  TCP-IP  is  another  protocol  capable  of  point-to-point
topology, which interestingly are used to communicate between the well
known Pioneer  CDJ  turntables.  TCP-IP  protocol  was  found,  however  to
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require high level implementation that would discourage the use of low
level micro-controllers for specific use modules.

One idea to extend RS232 to attain multi-input  capability  is  to  use a
multiplexer.  An  RS232  reception  pin  (RX)  would  be  connected
sequentially  to  different  multiplexer  pins,  theoretically  allowing  any
quantity of outputs to a single port Fig. 29. This idea could work if the
system has  other,  parallel  multiplexer  that  distributes  to  the  sending
devices,  an  electric  flag10 granting  permission  to  transmit,  as  a
consequence  of  the  multiplexer  being  connected.  This  idea  herein  is
referred to as polite serial since it is Serial RS232 with the difference that
the devices wait for their turn to emit signals.

10Flag  is  a  simple  concept  used  in  electronics,  where  a  boolean  type  of
information can be communicated or stored by using a voltage or its absence
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Figure 29: scheme of the multiplexed input to form a polite serial network. The
TX wires can be branched without multiplexer.

Another  protocol  explored,  also  based  on  the  RS232  was  focused  on
minimizing  the  required  amount  of  physical  serial  ports:  to  run  this
protocol, similar to polite serial, it would be required to use a serial input
(RX), output (TX) and a digital pin. It was based on the idea of a token
bus, but having a component that registers an address for each module
that is connected in the network. It was inspired in the Token bus and I2c,
thus it was named token bus homogeneous network or, in short, TBHN.
The concept is the same as in a token ring, only that in this case, there is
a token line, and to there is a module in charge of restarting the token
every time it reaches the end.

A  shared  bus  network  consists  of  a  single  bus  to  which  all  nodes
communicate Fig. 30. Two advantages of a shared bus network are the
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ability to monitor the whole network by monitoring a single wire, and the
possibility of optimizing the flow of events for lower latency. There are
two drawbacks: one is that each node gets a portion of the bandwidth
that  is  in  inverse  proportion  to  the  amount  of  nodes  in  the  network
(whereas  in  the  case  of  distributed,  each  network  has  a  different
bandwidth). The other drawback is the loss of the physical interaction of
plugging and unplugging terminals manually:  given that every node is
connected to every other node, what determines the messages to read
from  the  rest,  is  determined  by  software.  The  connection  between
components, therefore becomes virtual.

Figure 30: scheme of a common bus communication topology

It is also conceivable that each node’s input and output is a common bus
network,  thus  allowing  the  desired  physical,  cable  based
interconnectivity. This case can be exemplified with I2C Fig. 31: it would
be a candidate; if  it allowed direct slave-to-slave communications in a
bus. However, each node could be thought as being both an I2c master
and slave, being a master of its inputs and a slave of its outputs Fig. 32.
In this way a protocol such as I2C can be turned into a point-to-point
network. This same idea can be extrapolated to most other common bus
protocols available.
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Figure 31: Example of a master-slave scheme on a common bus network
topology, such as I2C

Figure 32: Application of a double master to slave communication scheme to
produce a point-to-point network

A  feasibility  exploration  of  using  a  common  bus  network  that  allows
direct node to node communication, a hybrid between Token ring and
master-bus polling was designed and tested. The topology and scheme of
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this network is illustrated in Fig. 33. Token is an imaginary signal that is
passed from one node to another, sequentially. Every node acquires the
right to write to the bus only when it has the token, and it can pass it to
the  next  node  once  the  writing  is  done.  This  is  one  of  the  fastest
protocols to distribute writing permissions, since it does not require to
use bus time for networking related information. All the bus time can be
dedicated to payload messages. This system will be referred to as token
bus homogeneous network or its abbreviation TBHN.

Figure 33: TBHN example

The network was set out to allow any node to broadcast information to all
the other nodes directly, and redefine a Master at run time in case a
master is unplugged, or not having a Master at all. Being a shared bus
network, as mentioned before, the interconnectivity among nodes need
to  be  determined  by  software  rather  than  the  physical  connection.
Instead  the  changing  of  connections  among  the  devices  would  be
software-based, it is necessary for the devices to keep track of addresses
on the other devices.

In  a  practical  sense,  each  node  needs  three  pins  dedicated  to  the
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network: a token input (TIP) pin and a token output (TOP) pin.11 Also a
common bus pin named COM, which reads and writes the serial bus. The
pins and interconnections among nodes are represented as squares in
the Fig. 33. The TIP and TOP pins are connected in chain from node to
node, while the bus pins are connected to the same cable among all the
modules. In this implementation the bus is different from an RS232 in
that  both  read  and  write  pins  are  connected  to  the  same  cable,  as
opposed to RS232 which use one for each function. This is the basic fact
that allows any module to communicate with any other module.

The protocol was defined under a set of basic rules. First, each module
has three states, consisting of Listening, Broadcasting and Connecting.
While in Listening state any normal node is on high impedance mode,
reading the serial bus. On Listening state, the node is also reading the
TIP  pin.  If  TIP  pin  is  set  to  1,  it  switches  to  Broadcasting  state.  On
Broadcasting state, the node sends all  its available information if  any,
otherwise a “no information” header. Finishing this, it turns the TOP pin to
1, causing the following node in line to switch into Broadcasting state.
When any data is received, a node turns the TOP back to 0 if it was set to
1.

Every  node has  a  unique  ID,  starting  from 0.  The  node number 0  is
special  role.  When  a  node  has  just  been  powered  up,  it  starts  in  a
connecting state. On connecting state, the node has no address, and has
the TOP on state 0. It is listening to all the broadcasts, and keeps track of
the highest address in the network. When its own TIP goes high, it sets
its own address to the highest + 1, writes a connected message to the
bus, and sets its TOP to 1. This should cause a chain reaction where all
the modules assign their addresses incrementally, if powered all at once.
TIP pin is pulled to the state 1, causing the first in line to start the chain
reaction from 0. A module can detect if there is a module before in the
chain by detecting the voltage on its TIP pin. It is normally high, but a
connected  node sets  this  pin  to  low.  When  a  node is  on  Connecting
mode, if it detects 1 on its TIP, and has not registered any address, it
means that there is no lower module. It will set its own address to zero. 

A message in the TBHN needs to contain some bytes that indicate the
functions of the message: origin and header. An origin byte represents a
unique  identifier  that  indicates  what  module  has  broadcasted  that
message.  This  unique byte is  registered on each other  module which
intends to read messages coming from that module.  The header byte
indicates the mode of the upcoming data. It is divided in two nibbles: first
nibble  indicates  the  mode  of  the  message  (broadcasted,  addressed,
empty, offline). The second nibble indicates the length of the upcoming

11In theory a single pin could fulfil both TIP and TOP functions.
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message in words.12 The maximum message length is 16*4 bytes. If the
second  nibble  is  F,  the  receiving  modules  will  wait  for  a  special
termination byte. Depending on whether the network is normal low or
normal high, an address or header 0X00 or 0xff respectively should not be
used since these are equal to bus silence, and can account for devices
that got disconnected or failed at run time.

Three devices in the network broadcasting messages, that were also sent
to the laptop’s serial port. One of these devices is a prototype of the x28
board.  The  signals  were  monitored  in  a  digital  oscilloscope,  and  also
translated into MIDI to provide a perceptible sense of rate.

In  order  to  implement  this  networking  protocol,  a  set  of  steps  were
designed and followed.  The  design  of  implementation  steps  helped a
gradual implementation of the network in such a way that it was possible
to monitor with clarity all the critical aspects of the network, delimiting
the amount of possible errors to a range which is easy to manage. The
step  one  consists  on getting  a  common bus  to  work;  meaning every
device can read and write to and from the same cable. The challenge
with Rs232 devices is that they have separate RX and TX pins, which do
not  necessarily  work  if  they  are  connected  together.  Three  Arduino
boards were connected to the same bus and programmed as to be able
to address each other individual node in the network by a hard coded
address, and that each one could respond with their own ID plus a string.
This is to prove that it is possible to use a hardware RX pin, which is
turned  into  a  TX  pin  by  software,  and  there  can  be  communications
through that pin. It also allows to chose the best pin impedance mode for
the listening state so that it does not interfere with other devices that
might be writing.

The second step consists on achieving automatic address assignation.
The Arduino boards are tied with the TI and TO connections, as expressed
in Fig. 33. One single Arduino board was set to reflect in the serial all the
signals  that  happen in  the common bus.  After  the automatic  address
assignation, the Arduino board that is connected to the serial should be
able to address individually each other board as in the previous step.

The third step of development is automatic token: the Arduino boards
should start their activity without input from the node that is connected
to the serial. The message length is fixed. The activity can be seen in the
serial output of one of the nodes.

At the fourth step of development, there is a basic working TBHN. This
steps  consists  in  allowing  node  to  be  added  or  removed  without
compromising  the  network.  In  this  case,  the  effect  was  granted

12A word in computer science is defined as four bytes.
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automatically,  because  the  continuity  is  given  by  the  physical  cable
between nodes, thus removing a node becomes a complete removal from
the  network.  After  this  steps  many  bugs  emerged,  related  to  which
specific  state  was  the  network  when  the  device  closed  or  started
communications. These bugs need individual addressing according to the
specific transition that causes them.

According  to  the  relation  of  this  development  to  the  design  of  the
environment that will be described later, it was determined that TBHN
development  not  to  be  necessary,  however  interesting  for  other
purposes.  The  protocol  at  the  stage  that  it  was  left  allowed  43.5
messages of 8 bytes per second (the frequency of the TOP of one device
was 14.5 Hz, having three devices on the bus) with a payload is 6 bytes
per message. It was observed from the busy versus silent time in the
bus, that there is room for duplicating this message rate. Additionally, it
would be possible to raise the baud rate, allowing even higher data rates.
Given this measurements, the latency down the token chain is very low,
and up the token chain is around 10ms. There is a chance that an end of
line message could be implemented, intended to be sent by a node that
detects  no  following  node.  This  end  of  line  message would  help  the
master  to  react  instantly  without  waiting  a  timeout.  The  testing  also
suggested that the header byte should go before the origin byte and not
after as initially specified. This reduces the bandwidth usage, because a
module could refrain from sending a message by using a null  header.
Otherwise the origin byte becomes redundant for an empty message.
This change of order theoretically would allow each node to host multiple
virtual nodes that could be addressed by the network individually. If the
following steps described at TBHN development repository guidelines, it
would become an interesting communication protocol with a distinctive
ability to perform slave to slave communications.13

To  this  point,  the  communication  protocol  available  to  use  are  direct
RS232 communication, polite serial, TBHN and point-to-point I2c. Despite
the efforts put in the testing of TBHN, it was concluded that common bus
networks are less suited for a modular environment than a point-to-point
network. The most important point is the inverse proportionality between
amount of connected modules and available bus time. There is also a
common  factor  among  common  bus  networks  of  high  strain  on  the
connected  devices  since  they  must  constantly  use  processor  time  in
order  to  participate  in  the  network.  During  the  initiation  of  TBHN

13There was an experimental implementation of this type of network, whose
code  and  notes  are  detailed  in  the  Token  Bus  Homogeneous  Network
repository,  available  at:
https://github.com/autotel/TokenBusHomogeneousNetwork.
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experimentation, there was an idea of using a global scope of signals
such as clock. The global scope obtains a bandwidth advantage from a
common bus because a message needs to be sent only once to all the
modules if it is global, while node to node messages have a disadvantage
of sharing the available bus time. The deprecation of a global scope that
was defined from the definition of environment (it took place at the same
time)  also  removed  the  advantage  of  a  shared  bus.  Furthermore,
applying  a point-to-point,  bi-directional  RS232 opens  the possibility  of
later  using  polite  serial or  other  similar  technique  in  case  a  greater
expansion of inputs is needed. The additional  benefit of point-to-point
networks  is  that  the  current  micro-controller  being  used,  the
ATmega2560 possess 4 hardware full-duplex Rs232 ports, which makes
the implementation easier at the current stage.

Among the study of the virtual implementation of the environment and
the  physical  study  of  the  device  networking,  a  message  type  was
specified which would be flexible enough for modular expressions, but
also efficient in terms of bandwidth requirements. It is based on RS232 in
the sense that messages possess directionality. This message needs to
reflect one header byte which defines the role of this message among
the available roles in that input, and a dynamically defined amount of
following bytes which specify more information in detail, being the first
ones,  the  most  important,  in  a  way  that  an  event-message  can  be
truncated  to  different  extents,  allowing  messages  to  still  work  with
different degrees of data loss.

It  was  defined from the testing,  that  it  is  interesting  to  use negative
numbers for operations such as recording a subtraction into an operator,
or automating a negative transposition of a melody. A negative point,
however of a signed integers is their limited range. This is what caused
MIDI  to  possess  a  range  from  0  to  127  instead  of  255.  For  the
implementation of control messages in this environment, the number 0
represents  the  middle  position  of  that  parameter  (instead  of  the
minimum, as it was defined in MIDI). Control change event-messages can
also be defined in higher resolution by using additional bytes to represent
decimal points. Numbers with negative value can also be described by
integers which are below 127. The conversion from unsigned integer to
integer thus becomes  int = unsigned byte-127.  This produces a range of
numbers which are asymmetric, where the maximum negative number is
-127 and the maximum positive number is 128. The number 128 thus
can  be  used  to  represent  a  transparent  or  undefined  number,  as  to
express event-message values whose values needs be filled with other
default value.
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4.5 Exploratory iteration in the 
Virtual-Modular environment

Figure 34: Schematic representation of a virtual implementation of a modular
environment

The exploration of a virtual implementation of this modular environment
was motivated by technical factors. The first version of the  Calculeitor
hardware  was  based  on  an  Atmel  Mega  328.  The  first  attempts  at
implementing the sequencer functionality in this chip demonstrated that
the  hardware  memory  would  not  allow  the  intended  composition
features,  but  most  importantly,  it  posed  challenges  on  how  to
communicate  with  other  devices  in  a  modular  way.  Being  a  design
project,  and  not  an  engineering  project,  the  facilitation  of  a  design
process was prioritized. This is  why this  device was re-purposed as a
controller which would be used to access a modular environment that is
simulated  in  a  javascript  application,  in  a  computer,  as  expressed  in
Fig. 34.  This  allowed  a  faster  evolution  toward  the  definition  of  a
composition  environment  and  gave  place  to  a  fast  evolving,  iterative
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exploration of this environment.

To  do  this  design  process  without  harnessing  the  possibilities  of
implementing it in the future, it was designed under a modular paradigm,
where each module must be strictly isolated from one another, except in
the  cases  where  they  have  explicit  connections,  in  which  case  these
modules  can  only  connect  through  event-message objects,  which  are
representations of a message that can be sent via a serial. This limitation
proved being useful  beyond the hardware compatibility,  it  caused the
interactions among modules to be clearer, and helped with the on-going
definition of global meanings for each message’s header.

The system was tested by doing test runs. There are four types of test
runs, the most simple being code debugging, where the environment is
run with the intention to make sure the system does not stop due to
programming  mistakes.  The  other  test  runs  consisted  on  testing  the
environment  with  the  intention  of  checking  its  playability.  For  each
change  that  is  done  to  any  module,  the  environment  is  launched  to
assess  whether  the  change  grants  the  environment  with  a  greater
affordance of divergency and a better musical outcome, also checking
what  other  outcomes  become  impossible  once  the  change  is
implemented. The third type of test run consists on performing with the
environment  in  public,  to  assess  whether  it  is  possible  to  lure  an
audience  into  dancing  and  keep  an  interesting  progression  of  the
patterns.  It  also  proved  useful  to  test  the  mental  strain  of  using  the
environment in the stressful context of the live stage. Finally, there were
test runs done with other users. These were done with people that had
some level of experience in making of music, preferable with advanced
production and programming of digital music, since its usage is not easily
learnt.

Debugging test runs are often part of the design process. Sometimes a
bug reveals that an imagined module or feature cannot exist, as it has
assumptions  that  are  either  illogical,  or  require  a  code  which  is  too
complex. Complex code is not a problem in terms of being impossible to
do, but because a musical interface needs to be predictable, otherwise it
can present surprising behaviours in the performance that ultimately can
leave the performer out of control.

Playability test runs are the most important ones, since their observation
models most of the behaviour of the environment. It is important to note
that a playability test run provides subjective, qualitative results since
they are tests done by the researcher alone. However,  the subjective
improvement of modules should give place to an environment which is
objectively divergent, since all the modules that are subjectively tested
need to share one same common language and the environment needs

88



to  provide  a  reliable  framework  for  these  regardless  of  their
heterogeneous variety. A playability test run will put a special focus on
what it becomes possible, and what becomes impossible once a change
is introduced. For the context of the virtual implementation, there was
little focus on providing an easy learning curve since this environment
does not aim at user friendliness,  but at  enhancement of  music as a
divergent activity. However, it was considered important that access to
changes were fast enough to facilitate a fluid and varied performance.

Throughout the environment development process,  a small  number of
user  tests  took place.  Same as  the  playability  tests,  a  user  test  also
provides  subjective  outcomes,  and  the  value  of  these  tests  were  the
unexpected insights that another subjectivity would provide. These tests
were not frequent because the environment being difficult to understand,
required an expert subject and a long time of instruction. Since the focus
of this development was on divergency, the interesting part of the test
would only start  after  the user acquired a certain familiarity  with the
environment, and how to use it through a Calculeitor controller.

There is a tension between user interface and facilitation of divergence:
as  seen  in  the  case  of  the  Korg  Electribe,  a  friendlier  interface
encompasses  a  limitation  of  possibilities  in  the  same  degree.  In  this
exploration, there was a rule that discriminates user interfaces that need
to be addressed from the ones that are not priority: the user interface
features  that  are  intended  to  make  the  interface  easier  to  learn  or
understand would not be prioritized, unless they were clearly hindering
the performance. The user interface features that improved the feedback
of the environment’s current state and also the features that allow more
fluid changes are considered important, however, because these boost
the fluidity while improvising music with the interface. Having developed
a specification of the environment,  products with a friendlier interface
can be created afterwards.

One of the most important limitations of current music composition tools
that motivated this work was the impossibility to modulate melodies into
different scales, chords or transpositions in the real-time. This idea was
also explored with the modular  mono-sequencers.  The most important
module for on-going composition, is a sequencer. The sequencer would
need a clock, and a preset-kit module in order to create drum patterns in
a fluid manner. Finally, to apply sequences to melodies while answering
to the idea of  pattern modulation, a  harmonizer module was created.
This module allows transformations on an event-message to respond to
musical  scales.  In  playability  and  live  performance  tests,  this  set  of
modules  already  provided  an  interesting  environment  to  improvise
music,  despite that  the modifications to  the sequence were slow and
difficult to produce.
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One of the challenging aspects to decide consisted on the granularity of
the  message  design.  In  the  very  first  implementation  of  this
environment,  each message had an attached output  destination.  In  a
single sequence, each message could be destined to any other module.
This logic was changed to messages which had no output specified, but
are sent consistently to every output of the module. Although the older
messages  which  specified  a  destination  seemed  to  open  some
possibilities,  it  posed  more  important  limitations:  in  the  musical
performances that tested this logic, there was the constant issue where
re-routing a message path through modules involved several steps. For
example, if a sequenced message was being sent to a preset-kit, and the
intention  was  to  re-route  it  to  a  harmonizer it  would  involve  the  re-
sequencing of each step in the sequence to change the route, whereas
by using messages of unspecified destination, a single step of re-routing
the module is enough. However, each module having distinct registered
outputs, could potentially route messages based on the output number,
in case a module required. This same distinction will still be present in
any potential hardware implementation of the environment.

Another important change regarding the mechanics of the environment,
derived  into  the  creation  of  the  backward-propagation concept.  This
concept  derives  from the  live  recording  style  that  is  present  in  most
digital  sequencers;  this  consists  on  the  ability  to  record  any  pattern
which is played gesturally into the device’s sequencer by pressing only
one  button.  The  modular  composition  environment,  being  modular,
posed a challenge on how to capture these live performed patterns from
any module into any other module. The need to play a pattern by hand in
real-time is of evident importance, since this composition method is the
most  fluid,  and  ultimately  most  intuitive  because  of  its  similarity  to
gesture-based instrument  designs.  The  challenge lies  in  that  modules
which  produced  output  such  as  a  preset-kit or  a  harmonizer are
independent from modules that can record patterns such as a sequencer.
A traditional sequencing tool has the advantage that recording can be a
dedicated procedure; but in a modular environment this is not possible
because  not  recording  module  nor  the  performance module  needs  to
assume  tailored  procedures  one  from  another,  specially  because  a
recording module needs to serve the function of a performing module in
some circumstances, thus allowing to re-purpose the elements.

To  create  a  generic  method  of  casting  events  from  one  module  to
another, a specification was needed. The specification is meant to allow
any module to record into any other module, or not cause problems if the
receiving module did not have such functionality. For this implementation
there were two potential candidates: either the recording module could
capture the output of any other module, or the performing module could
record its output into any other module. The first approach had two logic
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problems: first, in order to capture a live performance into a recording
module, the user would need to access the recording module, which does
not result in a fluid interaction pattern.14 Second, this method is the same
as in the current MIDI sequencers which have record function. By using
input recording, it is not possible to discern notes that are only meant to
be played from the ones that are meant to be recorded, leading to the
impossibility of having a module to process multiple streams of events
while recording only one of them. This problem seems specific, but for
instance, in groove-boxes such as Maschine or Electribe, it is not possible
to have them sonifying MIDI events and record real-time events at the
same time, because their  recording function also enables recording of
their internal MIDI input stream.

The second approach of  having the performing module to record into
another module also posed a challenge: it implies the addition of another
feature  to  the  environment  which  consist  of  a  parallel  network  of
recording connections among modules. In order to cast a recording from
a preset-kit to a sequencer, for example, a recording output could be set
from the  preset-kit  with  the  sequencer  as  destination.  This  idea  was
tested by using a special function header that indicates that the role of
the  incoming  message  is  to  be  recorded  instead  of  performed,  and
creating functions on each module that would emit event-messages to
the  modules  that  are  their  inputs,  henceforth  each  module  becomes
capable  of  recording  events  into  any  other  module.  In  case  the
destination module does not have the capacity to record, this module can
either pass the recording message to its inputs, or discard the recording
messages.

A user test run done with an expert  in  Ableton and live performance
using Push inspired the creation of a more fluid and easier to understand
interfaces to trigger recording. For instance, the direct access to input
recording in the buttons on the bottom were inspired by the experience
of this person using the environment; but most importantly the recording
protocol acquired its concept of being a ‘backward’ feature when he was
overwhelmed  by  being  able  to  record  to  any  other  module  in  the
environment. This test led to limit the possible recording inputs to only
the modules that were actually connected to the module in question (see
Fig. 35).  This  backward-propagation,  however,  remains  as  a  user
interface  improvement  that  is  specific  to  the  Virtual-Modular
environment. In a physical implementation of this environment, however,
the recording network could remain as a parallel network that allows the
casting of events from any module into any other module.

14This  interaction  pattern  would  consist  of  switching  the  view  into  other
module and then set it to record, then go back to the original module and
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Figure 35: Backward propagation among modules

One  interesting  thing  to  note  about  the  directionality  of  the
communications is that, although in this Virtual-Modular implementation
each  message  has  one  forward  component  for  the  obvious
communications  and  one  backward  component  for  recording,  in  a
hardware  context,  these  constrains  could  be  omitted,  allowing  each
module to have several inputs and outputs; each for a different purpose,
in a way similar to how modular synthesizers do. In a hardware version of
this  implementation  it  will  be  possible  to  see  different  inputs,  and
outputs, each one with a different label, while other more  conventional
modules may offer a connectivity similar to the one of Virtual-Modular.

Some  other  changes  and  features  in  this  interface  were  inspired  by
already  existing  performance  tools,  apart  from  the  ones  already
described. In the case of Maschine, for example, the arpeggiator feature
was a major motivation to implement a performing arpeggiator, which
translated into the creation of the narp module. Also the ability to bounce
an output into a track for further manipulation incited the idea of creating
a bouncer module, which allows the recording of a modified sequence
into sequencer, in a fashion similar to live bouncing.

Ableton  push  has  given  some  hints  about  how  to  make  a  better
harmonizer  module,  and  as  mentioned  before,  about  how  to  do  live
recording. This device offers a scale mode that still allows the use of the
non-scale notes while in the mode, giving the role to the scale of being
just a modification of the user interface. “In Chromatic Mode, the pad
grid contains all notes. Notes that are in the key are lit, while notes that
are not in the key are unlit.” (“Ableton Manual: Using Push” 2018). The
amount  of  buttons  also  allow  for  an  effective  melodic  sequencing  of
events, which is not practical in 16 pads matrix. The disadvantage of this,
is that the button sizes are not the best for drum performances. One hint
that was applied to the current harmonizer module was the two different
views: one in which each semitone uses the space of a square, and other
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where each square occupies a diatonic grade, having each pad coloured
according to its harmonic relation to other notes. 

A point that needs attention, regarding to the use of clocks in a bus, is
the possible delays in any chain where there is more than one clock-
bound  module.  As  it  was  described  in  the  initial  experience  with
composite  elements,  the  response  of  modules  to  clock  events  can
become inconsistent according to the order of execution of the signals.
As an example, if a sequencer is sending notes to an arpeggiator, the
first  note  to  be  triggered  may  happen  in  the  same  clock  tick  if  the
sequencer is processed before the arpeggiator, whereas it would happen
in the next tick in the other case. This usage case is illustrated in Fig. 36
The best solution, as studied there, is to leave the natural behaviour of
the delay since other solutions can behave in less predictable ways.

Figure 36: Patch of inconsistent behaviour

Some  strategies,  however  could  be  applied  in  the  hardware
implementations  of  this  environment  as  to  make the  behaviour  more
intuitive.  One  suggestion  is  to  use  chained  events,  meaning  that
generated  note  events  could  be  attached  to  a  certain  clock  event,
allowing a clock-bound module to associate events that are meant to be
simultaneous. This chaining could either be done by the use of a header,
or making the association if the time interval between events is less than
a threshold time value. 

Novation circuit has motivated many future ideas for this environment
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which  to  the  date  have  not  been  programmed  into,  yet,  their
implementation is clear and straightforward. For example, a method to
clear  events  from  the  perspective  of  the  performing  module,  as  a
backward-propagation  procedure,  implied  a  change  in  the  backward-
propagation language by including a header that indicates the role of the
event  in  question:  whether  it  records  or  it  deletes.  It  also  opens  the
possibility to do other changes through this medium. For a fact, a module
can indicate recording state changes, which would allow a sequencer to
adjust its length to the recording time, for instance.

As a last remark, the implementation of a composition based integration
of micro-timed events such as triplets or swing has been suggested by
features found in the sequencers of Elektron, Novation Circuit and Squarp
Pyramid. This has motivated the development of modules such as multi
tape and piano roll, which to the date of this text, are unfinished.

4.6 Environment futures
In the development of the Virtual-Modular environment, it was set as a
rule that modules could only communicate to the extent of potentially
digital  messages.  This  is  why  it  is  possible  to  think  of  physical
implementations  for  each module  that  was  tested,  knowing that  it  is
possible  to  implement  those  as  stand-alone  hardware.  In  a  physical
implementation, opposed to its expression through a Calculeitor, could
offer  dedicated user  interfaces  that  make it  easier  to  understand the
roles  of  each  interface  element  and  dedicated  controls  where  it  is
needed. These dedicated interfaces could function as stand-alone units,
or as rack mounted modules, as shown in Figs. 37, 38 in the cases where
the  function  is  highly  specific.  As  an  additional  idea,  most  of  the
hardware implementation of these modules could take part in the virtual
implementation of the environment as well since it is trivial to include a
serial  to  USB  interface  in  the  same  way  Calculeitor  does.  It  is  also
interesting  that  these  devices  could  be  used  as  standard  USB-MIDI
controllers or stand alone modules in case a user stops being interested
in modular composition.

There  is  an  important  additional  advantage  that  hardware
implementation of  the modules will  have in comparison to the virtual
implementation. Given the nature of the controller in the Virtual-Modular
environment and its development history, the modules were thought as
single input and single output modules. This helped providing an easier
way to control the routing of the modules since this routing was done by
using the button-matrix interfaces. One first insight that gave birth to the
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idea of multiple output and input modules was by the realization that a
more  complex  module,  formed  of  molecular elements  can  have  one
potential input per molecule that forms it. Additionally, the realization of
the  recording  network,  in  the  context  of  a  physical  implementation
concretized the need of more than one input per module. 
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Figure 37: Concept rendering of a composition rack
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Figure 38: Concept rendering of composition rack modules
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The  physical  version  of  a  module  that  can  most  easily  fit  into  the
calculeitor  interface  style  is  the  sequencer.  As  demonstrated  by  the
Synthstrom’s  Deluge  (“Deluge”  2018),  an  interface  with  more  matrix
buttons  affords  a  friendlier  interaction,  specially  for  non-quantized
rhythmic  features,  and  the  composition  of  melodies  that  need  to
represent note lengths. Such interface could have a similar morphology
to the one represented in Fig. 39.

Figure 39: Concept rendering of an extended sequencing module

A  module  that  would  improve  significantly  from  a  hardware
implementation is a harmonizer, mainly because a horizontal distribution
of  the  tonal  grades  is  more  intuitive  than  a  matrix  distribution.  A
harmonizer module could have back-lit keys similar to a keyboard, but
without  black  keys,  since  these  are  dynamic.  Another  approach  to  a
harmonizer’s interface is an isomorphic, hexagonal keys keyboard. The
linear  keyboard  interface would make of  the interface an intersection
between  a  keyboard  and  a  guitar  fret,  which  suggests  a  form factor
which  can  be  placed  on  top  of  a  desk  as  well  as  held  like  guitar.
Additionally, a keyboard interface could afford a mode where each one of
the  keys  being  pressed  are  triggered  by  using  strum  controllers,
producing a simplified version of a guitar interface. These user interface
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elements together would appear in an object as displayed in Fig. 40

Figure 40: Concept rendering of a dedicated harmonizer and keyboard module

There are usually two stances that people may have in relation to the use
of an environment: the dogmatic and the pragmatic, both of which need
to take place during the development of a new creative environment. In
the ambit of Euro-rack there are many musicians who take a dogmatic
stance  where  they  forbid  the  use  of  any  digital  method,  following  a
dogma of the analogue. Opposed to this, the pragmatic approach takes
each  different  ambit  as  an  opportunity  and  allows  itself  to  switch
between different working environment however it is more convenient or
inspiring. To develop a creation environment that intends to stand on its
own, a dogmatic stage is necessary since the self sufficiency is part of
the assessment criteria during the development. The earliest concrete
musicians, or the earliest synthesists would work exclusively with their
newly discovered expressive mediums as if they were the only mean to
possibly create music. This allowed the creators to explore the limits and
expressive possibilities of their techniques. For a technique to become an
integral part of a music system, however, it needs to integrate with other
performance paradigms that are seemingly contradictory, but allow them
to  take  part  in  the  greater  context.  Current  electronic  music  making
combines very often the techniques of the concrete music with the ones
of the synthesists. Sometimes with the techniques of classical music. The
following stages of this project should also involve entering in the area
where it takes part with a greater musical composition context, by using
different concepts than improvisation, modularity and discrete messages.

Musicians  who  do  not  intend  to  perform  with  exclusively  improvised
music  could  take  advantage  of  the  flexibility  of  the  environment  to
mutate their prepared tracks on stage to greater extents. In this case a
musician needs the possibility to prepare patterns that are tied to a set of
sounds. This ensures the musician that a certain musical piece can be
reproduced on stage, ensuring it will sound the same way it did on their
studio.  This  can  currently  only  be  done  if  the  musician  has  an
outstanding memory to recall exactly how to configure the environment
with a given synthesizer to reproduce what he intended. This context
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suggests that the environment would benefit from the ability to store and
recall patterns; which is possible by providing any mean of memory recall
to the hardware and to the virtual implementation of the environment.
This also suggests that certain modules in this environment will benefit of
integrating  sequencing  and  synthesis  in  the  same  way  any  drum
machine  or  groove-boxes  do,  producing  a  closer  relation  between
sequence and synthesis.

In the Virtual-Modular implementation environment, the preset-kits work
as a translation from a simple event-message,  to  one event-message
that has enough information to become MIDI. In the speculated module
that  integrates  the  function  of  a  preset-kit,  sampling  could  already
integrated  in  the  interface,  as  conceptualized  in  Fig. 41.  It  is
recommended for a synthesizer-provided hardware module to define a
set  of  filter-defined  triggers  mapped  to  a  set  of  synthesizer  related
triggers.  For  instance,  a  sampler  could  define  16  event-messages  of
consecutive numbers, and have those mapped to 16 different samples;
or a lead synthesizer could map consecutive event-message numbers as
notes  in  a  similar  way  to  MIDI.  Additionally,  the  synth  could  define
additional  triggers to change sound parameters in a way analogue to
MIDI control change messages.

Figure 41: Concept rendering of a sampling-preset-kit module
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To give a greater scope of use to one device, it would be advantageous to
integrate a built-in sequencer so that the device can also run without the
aid  of  any  other  module.  For  such  device  to  be  integrated  in  the
environment, there is an obvious requirement to have inputs and outputs
of  event-messages.  The  question  raises  on  how  to  integrate  the
intervention of other modules into a device that already has an attached
sequencer. For this, the module needs also to be able to ignore its own
sequencer  input,  and  instead  route  this  sequencer  into  an  event-
message  output,  so  that  a  module  can  be  side-chained between  the
sequencer and the sound module. Therefore, an integrated sound and
sequencing unit must also permit the same functionality than the two
units could present if they were separate.

Deejaying  devices  carry  a  big  vernacular  load,  hence  a  modular
environment  approach  to  deejaying  can  only  provide  with  means  to
produce a similar effect and workflow as the one of deejaying, but not
offer  a  meaningful  improvement  as  a  device  for  deejay  culture.
Presentation  of  pre-recorded  tracks  brings  the  value  to  more  popular
audiences  of  providing  recognizable  songs  or  patterns,  which  for  the
broader audiences is crucial. The modular environment could add to live-
remixing, the benefit of complex patterns of beat slicing, and jumping
around a song that goes beyond a mere loop lock. For instance, a track
sampling device can offer the possibility  of  completely  re-arranging a
track according to an emerging sequence, that allows modifying an on-
going, recognizable song into a new one that only shares the timbral
characteristics  with  the  first.  This  possibility  could  lead  to  a  hybrid
between live composition and Deejaying.
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Figure 42: Concept rendering of a loop-oriented sound module in the spirit of
the modular composition environment

Being  both  serial  based  protocols,  it  is  easy  to  understand  that  the
modular environment protocol can be translated into MIDI. The event-
message function header is translated into the first nibble of the MIDI
header  byte;  and  all  the  rest  of  the  transformations  are  only
recommendations: to use the event-message’s third number as the MIDI
channel, and the second as the MIDI second byte (note or CC parameter).
This changing of places is graphically represented in Fig. 43. The event-
message’s  fourth byte is  recommended as the MIDI  third byte,  which
accounts for velocity or CC value. This is because event-messages are
not required to carry velocity. The need to express a three-bytes midi
message in four bytes in the modular environment accounts for the need
of  these  message  to  be  purpose-agnostic,  meaning  that  a  message
whose functional parts are separated in bytes are easier to re-purpose in
a modular patch than MIDI messages, which use the header byte for two
purposes.  For  more  complex  modules  such  as  sequencers  or  sound
modules,  midi  input  and  outputs  could  be  integrated  in  the  unit.  A
dedicated conversion module could have an interface similar to the one
rendered in Fig. 44.
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Figure 43: Schematic representation of the conversion from modular event-
messages to MIDI messages

Another  obvious  translation  from  the  environment’s  event-messages
would  be  to  control  voltages,  to  facilitate  integration  with  modular
synthesizers. This is the main reason why for the modular connectors of
this environment is recommended to use a different connectors than 3.5
millimetre jacks. This reduces the risk of confusion between two signal
types (digital and analogue). An event-message to analogue converter
could  require  additional  mapping  settings,  since  the  requirements  for
patching may vary, and a good design approach would be to implement
three  different  mappings  that  can be  switched  with  a  single  knob  or
switch, as appears in Fig. 44. One example of such mapping could be a
MIDI-like note on and off scheme, where the second number selects the
destination plug, and the third or fourth bytes define the voltage. Another

103



example  could  be  mapping  the  third  number  (which  mapped to  MIDI
would  translate  into  channel)  to  select  the  physical  cable,  while  the
second number defines the voltage level.

Figure 44: Two concept rendering of rack conversion modules

The Korg  Kaoss  Pad 2  served as  an inspiration to  consider  a  module
which produces control signals. In one hand, serial based protocols are
prone  to  overflow,  as  it  will  often  happen  to  a  MIDI  stream when  a
detailed  control  messages  are  sent.  However,  such  a  device  could
produce lower serial signal rates to reduce the control signals rate, while
having  fully  analogue  output  voltages  sending  control  voltages  at  a
higher sample rate. This can provide an interface between a quantized
environment with the other continuous value environments. In this way,
an  infrequent  digital  signal,  can  trigger  another  high-rate  continuous
signal,  thus  producing  a  bandwidth  efficient  approach  to  translate
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parameter change signals into analogue signals. This module could also
integrate its own effects processor, just like the one of the Kaoss Pad, but
with the ability to externally drive the effect parameters, and with more
focus on looping these automations.

Figure 45: Concept rendering of a module that makes reference to Korg’s Kaoss
Pad

A signal merger and splitter can be simple device. A serial signal can be
sent to many devices as long as none of them draw the voltage down.
For  this,  the  splitter  could  ensure  the  levels  of  the  signal  by  using
discrete components. The more complex operation of a merger/splitter
device is to merge two incoming signals. In this case, all the incoming
signals need to be stored in a buffer, and sent to the output one after
another, starting by the oldest. The merger/splitter contains two rows of
plugs;  the first  row being inputs,  all  get merged into a single stream
which  is  cast  directly  to  all  the  connectors  of  the  second  row.  The
resulting  concept  of  module  would  look  similar  to  the  representation
present in Fig. 46. If the user needs only to split a signal in two, a simpler
device could be used where the cables are merely connected without
active components. This would allow a signal to go through two different
paths forward in the patch.
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Figure 46: Renderings of devices with highly specific functionalities
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5 Evaluation & 
discussion

This chapter contains three different assessments
of  the  success  of  the  modular  environment  in
question.  The  first  section  evaluates  the
effectiveness of  the modular  environment  in  real
parties  where  it  was  used.  The  second  section
describes  some  examples  of  different  musical
systems that can be built with the environment, as
a measure to assess the effective divergency in the
layer  of  musical  systems.  Finally,  a  comparative
assessment  is  done  in  order  to  describe  the
divergency  of  the  modular  environment  in
comparison to other techniques of performing live
conventional electronic music.
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5.1 Experiences performing with 
Virtual-Modular
During  the  development  process  of  the  Virtual-Modular  environment,
there were many opportunities to test the concept and its current state
of development in its intended field: a dance party. These are the best
opportunities  to  test  the  highest  level  effects  of  the  composition
environment: the music  in  a  social  context.  The performances helped
drawing conclusions of its effectiveness at different development stages.

5.1.1 Fukuoka-shi, Japan

For this performance the Virtual-Modular environment was at the earliest
state where it could be used to perform live. In this performance it was
realized  that  the  environment’s  interaction  patterns  needed  to  add a
focus on fluidity, by offering default behaviours, since the time it took to
configure each event and pattern was long, and the musical outcome
came  out  very  repetitive.  In  other  words,  it  is  not  enough  that  an
interface allows to do a certain operation, it is also necessary for such
operations  to  execute  fast.  Thankfully,  there was  a  drum track  being
sequenced  in  a  Korg  Electribe,  which  reduced  the  strain  on  the
composition interface. For the most part, the melodic content was being
generated in the interface by heavily relying in emerging polyrhythmic
features, while a conventional drum pattern was being generated by the
Electribe synthesizer. 

5.1.2 Ääniaalto, Helsinki, Finland

Ääniaalto is a yearly festival of sound art and performance, which is a
perfect opportunity to show projects that propose something new such as
this one. At the time of the application to the event, the Virtual-Modular
environment  was  very  advanced  in  the  version  2,  having  performed
previously  in  Kyushu  with  a  version  1  of  this  modular  composition
environment.

The  visual  feedback  that  was  available  in  the  performance  given  at
Kyushu was no longer available because it was designed to work with an
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older version of the environment’s prototype. After a small demonstration
of  the  prototype  in  thesis  seminar  course,  it  became  clear  that  the
Calculeitor’s  interface  did  not  give  any  clue  about  the  aspect  of
modularity present in the tool, hence it was decided to adapt the visual
representation of the environment to work with the newer version, so
that people could understand and visualize the musical operations.

The visuals used in Ääniaalto were based on the ones prepared already in
Kyushu, but this time, an additional layer of information was added for
better  clarity:  a  layer  that  draws  a  different  representation  for  each
module type that would take instance in the modular environment. The
presence and connections of the modules were the same as previously,
using a D3 (Bostock 2017) force-directed graph, but a layer of a Konva
canvas drawing plug-in (“Documentation | Konva - JavaScript 2d Canvas
Library” 2018) was superimposed, allowing more easy addition of texts
and  graphics  that  are  unique  to  each  module.  A  protocol  of
communication  between  the  Virtual-Modular  environment  had  to  be
devised, so that the graphical interface could account for each module,
its type and its connections to other modules. The graphic interface also
represented the messages the modules would exchange, and the lengths
in the case of the arpeggiators and sequencers.

During the performance, the control of the environment was lost, causing
the performance to end prematurely, due to an unexpected factor. The
problems that  caused this  failure,  were more related to  psychological
factors than to technical issues. Despite that this environment has been
used without problems in laboratory conditions; with the pressure of an
audience, it became difficult to find a correct strategy to escape from an
error. The initial intention was to produce a scheme of muting the drum
pattern  to  do  a  melodic  change  and  then  bring  the  drums  back,
producing a spontaneous change. The preset-kits were set to mute with
this objective in mind. To produce a fast melodic change, an arpeggiator
was created at which point the sequencer that was responsible of the
drums, was deleted unintendedly. After re-creating the sequencer as fast
as possible, the transcurring time increased the mental pressure. When
the drums were unmuted, there would be no resulting sounds, perhaps
because of a missing connection or a wrong setting in the synthesizer. At
that point, the pressure was such that the performer decided to give up.
In many performances with audience, this performer has faced problems
such as computer shutdown or software failure; in all these cases it was
possible to exit the problem state easily by disconnecting the affected
device and using another device instead, as backup. What is interesting
of this  emotional failure, is its inescapability: despite that any technical
difficulty  could  have  been  addressed  simply  by  using  the  backup
synthesizers,  when  the  emotional  state  of  a  performer  fails,  there  is
nothing they could use as backup of their own mind.
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The burden of the interface in the failure hovers over this experience: the
insufficient information in the interface was clearly one of the factors that
caused this failure, but also the lack of confidence was important. For
instance, with a much simpler composition system such as Maschine, it
can take more than a year of practice to attain the level of confidence
where it  is possible to figure out alternative solutions when there is a
noticeable problem in the sound. To get familiar with the more complex
modular  environment,  at  least  the  same  amount  of  time  would  be
expected. An additional factor that might have affected the mistakes in
the performance, are the many changes that have been applied to the
user  interface,  which  caused the  mode of  operation  to  be  constantly
changing.

This  problem,  thus  highlights  the  need  of  focused  practice,  but  also
highlights the importance of finishing the development of the hardware
version of this interface. In the current Virtual-Modular environment, a
module can be hidden when it  is not focused in any of the controller
hardwares.  As  a  consequence,  events  can  happen  without  showing
visible  evidence  in  the  user  interface.  In  contrast,  in  the  hardware
implementation of the modular environment, there would be a one-to-
one relation between hardwares and module  instances:  each physical
unit  not  only  represents,  but  is  one  module;  meaning  that  less
information can be hidden from the user.

5.1.3 Calculeitor party

The 4th May a party was organized exclusively to test the Virtual-Modular
environment.  Another intention of  the party was to  provide additional
social  networking  opportunities  as  to  improve  the  chances  to  build
product out of this thesis project. The party took place in Aalto’s Kallio
Stage in Helsinki, and two other participants were invited to play dance
music to offer a more varied set of music and set the desired framing to
the party. After the realization of this event, a short feedback interview
form was handed to the participants,  and the written responses were
collected.

Feedback form Questions:

• Your name (or anonymous)
• In  what  ways  the  music  performance  was  changing,  and  in

what  ways  was  it  constant?  How does  it  compare  to  other
electronic music performances you have seen?

• Why did you decide to come?
• What were your  expectations,  how did  they compare to  the

actual event?
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• What can you tell about how the musical instrument is used to
make music? How did you know/realize that?

• Any other comments

The  evaluated  success  of  the  party  is  ambivalent.  Despite  the  most
important  aspects  of  the  party  took  place,  namely,  the  presence  of
audience and that the music during most part of the performance was
improvised using the Virtual-Modular environment.  One of the aspects
that were not achieved well, is that participants did not dance beyond
subtle body gestures. One of the participants of the audience, Camilo,
who had knowledge about organizing events commented about a lack of
bass in the sound (Sánchez Carranco 2018). Another aspect that affected
the framing of the event was the presence of chairs. It was presumed
that some other important aspects were hindered by characteristics of
the space where the party took place. In one of the feedback responses,
it was mentioned that it was hard to know what to do during the party
because of the contradicting presence of dance music, and chairs in the
space.

Despite these drawbacks,  the party allowed the audience to  get  fully
engaged with the ongoing music performance, and as a result it was still
possible to assess the interaction between the created music and the
audience.  Some  questions  of  the  feedback  form  revealed  some
interesting perceptions from the participants. For instance, it came clear
that  the  music  performed  is  perceived  as  different  from  the  usual,
although still being conventional. It was mentioned by a participant that
the music had both: largely repeated patterns and surprising changes as
well.  These observations account for the fluidity and originality of the
performance.

The Virtual-Modular environment could offer an approach to recover the
performance  relatedness  with  the  audience  in  electronic  music.  A
common situation in electronic music performances is the unawareness
from the audience about how the music is being made. This happens
because,  opposed  to  mechanical  instruments,  electronic  music
instruments have non-obvious relations between interaction and sound.
This is considered an issue because it reduces the interaction between
performer and audience; as pointed out by one feedback response where
the person thought  that  there were prepared preset  patterns.  By the
question “what could you deduce how the instrument is used to make
music” it became clear that there is no clarity on how the music is made
but the development of visuals is a possible development path that could
strengthen this relatedness. This idea became apparent from mentions in
the feedback form as well as in conversations about the visuals. There
was an active involvement trying to infer the relation between the visuals
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and the music, and if they represented the state of the environment in
greater  detail,  it  would  provide  the  audience  with  an  intuitive
understanding of the inner world of the performance.

5.1.4 Kaiku Pheromondo

After the Calculeitor party, an invitation was received to play at a party
named Pheromondo, in Kaiku. Being two weeks after the Calculeitor party
and with the feedback of some of the assistance in the audience, it was
possible to improve the response of the music to the social group.

The Pheromondo granted better chances than the Calculeitor party to
assess  the  potential  of  the  modular  environment.  There  were  the
advantages of a longer time, and a party environment. Additionally, there
were two hours to play, which provided enough time for the performer to
calm down and observe the audience’s response to the musical changes.
To a greater extent, it was possible to model musical changes according
to the observed reactions of the audience, and replicate the successful
modulations  at  different  points  during  the  performance.  Not  having
access  to  request  the  audience  to  fill  a  survey,  the  success  of  this
performance was only reflected by the constant dancing, the involved
response from the audience to the musical  changes, and the positive
impressions  verbally  manifested during  and after  the  performance by
people that were not aware of this project.

5.2 Systems exploration
As a way to evaluate the flexibility and originality possibilities that the
Virtual-Modular environment affords, this section describes some of the
meaningful musical systems that can be built in the environment, and
used in a performance.

5.2.1 Introducing a drum kit

One sequence can be used to play any set of sounds. If a sequence was
originally intended to play a certain drum kit, its output can be routed to
a  different  drum kit.  This  adds  some variety  to  the  patterns  without
requiring to program new patterns.

To switch into a set of sounds without making a disruptive change in the
sound, the output of the sequencer can be switched to a preset-kit that
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has all its sounds on mute. After the switch, the preset-kit can be taken
off its mute, sound by sound. Depending on what synthesizer is being
used  to  produce  the  sounds,  it  is  also  possible  to  introduce  the  new
sound by fading-in the new sounds gradually. The same can be done for
melodies. By interposing a preset-kit between a sequencer that contains
a melody and its  output,  it  is  possible  to  mute all  the grades  of  the
melody, and gradually unmute them.

5.2.2 Polymeter

The  modular  environment  can  easily  form  polymetries,  since  the
sequence  lengths  need  not  to  be  interlocked.  An  easy  method  is  to
program a single note on a narp and change the playback rate while it is
running. This produces an interesting rhythm that jumps from polymeter
to  normal,  or  to  off-beat  patterns.  It  can  also  be  done  by  using
arpeggiators, when the amount of arpeggiated notes are not multiple of
the other sequences. Additionally, two sequencers with different lengths
can  produce  emergent  polymeters.  This  technique  is  broadly  used  in
electronic music either by using a polymeter of 3 against 4, or by using a
beat synchronized delay with a delay time of 3 beats. It was observed
that polymeters of 5 or 7 against 4 are also interesting and easy to listen.

As an addition to the described polimetric system, it is possible to attach
an  additional  sequencer  which  re-starts  one  of  the  two  sequencers,
making  these  to  come in  synch  every  certain  number  of  steps.  This
technique makes the musical patterns easier to understand rhythmically.
To produce this  feature,  an additional sequencer can be added which,
connected to the out-of-meter sequencer,  sends jump signals  with an
interval  that matches the main metric.  To exemplify,  let us think of a
composition based on 4/4 meter, with a second sequencer which runs a
sequence of length 3. In this case, both sequencers will produce a cycle
of length 12 (the sequence repeats every 12 steps). In case of techno or
house music, a length 12 is not highly expected. Many of these tracks
produce a  forced reset15 of  this polyrhytm at step intervals which are
multiples  of  8  (most  commonly  16  or  32).  To  achieve  this  reset,  a
sequencer is added and connected to the secondary sequencer, and a
trigger on is programmed to trigger every 16 steps, with a number 0.
This  trigger  on  event,  effectively  causes  the  secondary  sequencer  to
jump into step 0 every 16 steps, thus producing the desired polyrhythm
reset. 

15Meaning  that  the  secondary  sequence  step  is  set  to  0  regardless  of  its

114



5.2.3 Held note

Many MIDI synthesizers have what is called a MIDI panic command. The
phenomenon  related  to  this  feature  can  be  used  in  the  environment
purposefully. The MIDI panic command shuts off all the notes that were
left sounding indefinitely.  These notes are called  hanging notes.  Using
digital signals to represent note events imply that either the system only
uses note on events (implying that the duration of a sound cannot be
expressed), that all the notes have an inherent duration, or to use note
on and note-off events. Because it is the simplest approach, the latter is
being used by MIDI, and was adopted in the Virtual-Modular environment
as well. One example of using a hanging note purposefully, is to leave a
hanging  note on  an  arpeggiator,  as  exemplified  in  Fig. 47.  It  can  be
achieved by first adding a source (e.g., a sequencer) of note on events to
the arpeggiator (1), and disconnecting that source after the note on, and
before it emits the note-off (2). This causes the arpeggiator to lock in an
arpeggiated pattern, until its memory is cleared by the user. For hanging
note security, the MIDI output module keeps a list of the notes on, and it
is possible to send all the matching MIDI notes-off from the list.

Figure 47: How to produce a held note in the Virtual-Modular environment

5.2.4 Skip-jump sequencer

The sequencers of the Virtual-Modular environment are designed to jump
to different parts of the sequence when they receive a trigger on event.
This  makes  it  meaningful  to  connect  one  sequencer  to  another,  as
illustrated  in  Fig. 48  Alternatively,  the  sequencers  can  be  set  to  stop
when they receive a trigger off. This allows for interesting patterns where
one sequencer can cause other sequencer to jump into different sections
of a pattern. This technique is similar to what is possible in the sample-
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based technique called beat-slicing, except that in this case it is applied
to  sequences.  Two  sequencers  can  trigger  each  other  in  a  loop,  to
produce unexpected generative patterns.

Figure 48: how to produce a skip-jump-sequencer system in the modular
environment

5.2.5 Patternized arpeggiator

By setting the clock source of an arpeggiator to something different than
a steady clock it is possible to do more interesting dynamic patterns. The
virtual  version  of  the  modular  environment,  by  default  creates  a  bus
which outputs to every other module. This is specifically intended to have
a  clock  being  distributed  by  default  to  every  module.  To  create  the
patternized arpeggiator, first an arpeggiator is created, from which the
main  bus  is  disconnected.  This  causes  it  to  stop  running.  After
disconnecting the arpeggiator, an additional sequencer is added, having
its steps programmed with clock events instead of notes. The resulting
chain of modules is illustrated in Fig. 49. Now the arpeggiator advances
one step every time the sequencer triggers a clock event. This technique
replicates the type of arpeggiators that have a pattern options, such as
the pseudo-arpeggiator of the Electribe 2.
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Figure 49: How to produce a patternized arpeggiator system in the modular
environment

5.2.6 Toggling note

Sometimes it is needed that certain notes in a sequence vary from one
repetition  to  another  while  having  the  rest  of  the  sequence  running
consistently. This can be set up by creating a secondary sequencer or
arpeggiator that contains all the variations of that event. Each of these
alternating notes can be triggered by the main sequencer, when it sends
a clock step. For this, the main sequencer needs to be connected to the
secondary sequencer through an operator which lets only clock signals to
pass. In a way, this pattern is similar to the patternized arpeggiator, with
the difference that in this case, the same sequencer is used to program
triggers  and  clock  events.  This  system  is  illustrated  in  Fig. 50.  This
system could also be potentially used to create Elektron style conditional
triggers (“Analog Four Manual” 2018, 36).
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Figure 50: How to produce a toggling note system in the modular environment

5.2.7 Progressive melody

A progressive  melody  is  similar  to  the  toggling  note  in  the  sense  of
having two sequences producing a longer melody by using operators as
an interface. In this case, the main sequencer is used to play a constant
melody, and a secondary sequencer that is running at a portion of the
first sequencer’s rate, causes the main sequence to transpose.

It  is  possible to apply this  technique to an already running sequence,
without interrupting the melody. The indication of the Fig. 51 suggests
that one normal sequence could be playing through a harmonizer (1). To
this  scheme  an  operator  and  an  additional  sequencer  are  added  in
parallel,  but  not  connected  to  the  output  (2).  The  operator  is  set  to
operate the note number, for instance, with addition (3). The value of the
operator can be such that it does not produce a change (e.g. +0). The
main sequencer route is changed to pass through the operator (4). The
secondary, slow sequencer is connected to cast events into the operator
by using a bouncer (5). The operator becomes a note modulator which is
constantly  changing,  according  to  the  programmed  pattern  in  the
secondary sequencer (6). At this point a dynamic transposition is applied
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to the main pattern. In the illustrated example, note that depending on
whether  the  transpose  operations  are  caused  after  or  before  the
harmonizer, the transposition can be chromatic or diatonic, respectively.
Such type of patterns are common in blues, for example, where a melody
is repeated four times but in different transpositions of the pentatonic
scale.

Figure 51: How to produce a progressive melody system in the modular
environment

After producing the progressive melody construct, often connecting the
slow sequencer  to  the fast  sequencer will  produce interesting results,
because  the  slow sequencer  will  cause unexpected jumps in  the fast
sequencer, causing an emergent new melody on the base of the first.
This same pattern can also be applied to the output of arpeggiators and
other similar modules, perhaps to generate complex harmonies whose
elements are all modulated by the same rules.

5.2.8 Sequenced pattern routings

The route-sequencer allows for  many unusual  composition alterations.
One of these is the possibility to apply transpositions or feedback delays
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to a musical pattern variably depending on whether it is on its strong or
weak time. By the same means, it is also possible to subtract or silence
all events according to this rhythmic role simply by disabling the route on
the desired steps.

As a function of feedback for a delay module, it is possible to produce
generative  patterns  by  feeding  back  some  of  the  route-sequencer’s
output  modules back to  the delay.  These modules between the route
sequencer  could  be  such  as,  for  example,  an  operator  or  a  chord
generator, thus changing the composition of the pattern stream. A note-
sustain  module  can  be  interposed  between  the  delay  and  the  route
sequencer  as  an  effective  mean  to  limit  the  amount  of  events
(preventing an excessive amount of events).

A more usual  application of  this  module,  is  to  produce swing on any
composition. As it was specified that different effect routes could take
place depending on the rhythmic role of the event, events in a weak step
could be routed to a delay, thus producing an effect of swing. It is also
possible to produce less usual rhythmic artifacts, such as a swing where
only one per each four steps fall in the correct time.

5.2.9 Feedback loop

Alike  other  modular  environments,  it  is  possible  to  produce  feedback
loops. This dictated the use of lazy queues instead of a call stack when it
came to the communication between modules. A lazy queue consists on
a list of tasks that need to be performed, which are processed in the
same order as the tasks were queued. While in the context of an event
stack, the causation of a feedback loop leads to a stack overflow error.16

In a lazy queue, however any amount of events can be added, with the
effect that a feedback loop may cause an ever-growing queue of events
to process.

The  effect  of  producing  a  feedback  loop  of  modules  which  are  clock
bound,  generates  unexpected  musical  patterns,  sometimes  with  very
long periodicity. Feedback loops comprised of non clock bound modules
produce  an  explosion  of  rapid  events  which  create  harsh  noise  and
glitches  in  whichever  module  is  interpreting  the  control  signals  (e.g.,

16When a function calls another function, it is referred to as being  stacked.
This is because the caller function is expecting the called function to return
(end)  in  order  to  proceed.  If  this  stack  gets  too large,  it  causes  a  stack
overflow error. The stack limit is usually very high, hence stack overflows are
usually caused by procedurally stacked functions, specially in functions that
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Pure-Data receiving MIDI).  This difference is caused due to that clock-
bound modules expect clock signals to send outputs, while the not bound
modules propagate the signals as fast as possible.

Adding a feedback loop to a delay module can lead to interesting results.
Note, however that in this  case is crucial  to add some operation that
could remove events after a certain amount of repetitions; otherwise the
events  accumulate  fast  and  slow  down  the  performance  of  the
environment.  In  this  sense,  it  works  the  same  way  than  any  delay
module:  if  the  feedback  does  not  attenuate  the  signal,  the  noise
accumulates  until  distortion.  A  good  way  to  do  this,  is  to  use  two
operators in series between the feedback output’s and input: one that
subtracts from a number,  and other that lets pass only events whose
number is larger than a certain amount. It is also possible to use other
modules such as a route sequencer, which would propagate the events
only at certain intervals. In the chain that modifies the delay’s feedback,
any module can be interposed, which can lead to different alterations to
a note which vary upon each repetition.

In addition to the performance patterns that were just described, many
additional ones could be built. Moreover, it is still possible to create new
modules that could open new possibilities in this respect. It is speculated
that  either  the  physical  or  graphical  implementation  of  this  modular
environment would allow the creation of more complex musical systems:
the  connections  between  modules,  currently  being  selected  and
visualized through the button matrix, are difficult to understand. Higher-
levels of complexity that would be trivial by means of visible modules
and cables.17 All  this  accounts  for the broad divergency that  this  tool
offers: it is possible to generate many different musical systems, each of
which  affords  a  spectrum  of  musical  results.  This  provides  two
dimensions of musical expression in the live stage: creation of systems
and  creation  of  musical  patterns.  In  addition,  a  third  dimension  of
divergency is added when considering that the author can code his own
modules in the context of preparation.

5.3 Comparative assessment
The  initial  question  of  this  thesis  was  stated  in  the  terms  of  how  a
composition environment could afford more divergent improvisations of
conventional  electronic  music.  In  relation  to  this  divergency,  three

17Visible modules and cables can be achieved using a graphical user interface
for the Virtual-Modular environment, or by creating a physical version of the
environment.
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metrics  were  described:  fluidity,  flexibility  and  originality.  As  it  was
mentioned, these metrics were important in terms of how the tool affords
the expression of these three characteristics.  According to these, it  is
possible to assess the success of the created environment in comparison
to  current  music  improvisation  tools.  To  assess  the  value  of  the  new
composition  environment,  a  comparison  can  be  made  against  other
current live composition tools of different natures.

5.3.1 Fluidity

The scope of fluidity on a live performance, more than having relation
with the amount of sounds produced, it has relation with the amount of
musical ideas. A live performance is most likely loop-based, and hence a
new musical  idea  is  represented  by  changes  to  that  loop  where  the
repetition of the same loop is considered as a permanence.

Referring back to the performances based on gestural mapping, it was
seen  that  improvisation  is  possible  within  parameters  of  body
coordination  and  agreement  across  musicians.  This  thesis  project
included the development of a physical interface which offers means to
produce  music  from  commonly  used  gestures.  Modules  such  as  the
harmonizer or preset-kit offer the common press-sound relation between
action and sound. The environment also offers more complex results to
the  same  simple  gestural  operations  such  as  transforming  tonality,
composition and rhythm in different ways. However limited the possible
gestural  inputs in the Calculeitor controller that was devised, it  is  not
difficult  to  imagine  the  creation  of  devices  that  could  capture  more
complex gestures. A good guide to such development could be Imogen
Heap’s working prototype, which suggests the use of position, posture,
touch and gestures among many other gestural variables (Heap 2013). In
this sense, a very interesting new research question opens. It would be
about the exploration of composition procedures that gather body and
gestural  variables,  and  attain  musical  meaning  within  the  context  of
modular  composition.  A symbiosis  could be attained between the live
composition  of  musical  systems  and  live  performance  using  these
musical systems.

With  regard  to  a  deejay  performance,  from  the  point  of  view  of  an
unaware audience, many musical changes are present, since these are
integrated in the recording. This can convey a sense of fluidity. From the
point of view of the deejay, however, it is necessary to think in a different
abstraction than composition or scoring, since there are very constrained
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possibilities to re-compose a pre-recorded track. Focusing on potential,18

there  is  only  a  limited  amount  of  not  performed variations  to  a  pre-
recorded track such as applying a filter or jumping to a different point of
the song. There are also constrains on how to superimpose pre-recorded
tracks because of these are an already rich musical piece: both tracks
need to sound well  together. In this sense, deejaying has an ambit of
improvisation which corresponds to the choice of layers, and application
of effects. It excludes the ambit of composition improvisation.

Performances with DAW based tools such as Maschine allow very fast
input  of  a  composition  since  it  can  be  played  with  precise  pressure
sensitive  pads.  The  possibilities  to  modify  those  sequences  once
performed,  however,  are  limited,  unless  they  are  modified  using  the
mouse and screen interface in the laptop. In the case of Ableton; there
are more modulation options and there are  more interaction patterns
available  to  play,  such  as  chord  playing,  chromatic,  more  arpeggio
patterns,  more  effects,  and  so  on.  Moreover,  it  is  possible  to  apply
transformations to the composition stream using Max as a MIDI effect
(“Creating MIDI Effects” 2018; “MIDI Effect Tools” 2018). However, the
max patch itself cannot be modified using the physical interface but max
abstractions could be chained as midi  effects.  If  each instantiation of
MAX in  the  Ableton  context  is  counted  as  a  module  of  this  project’s
environment, it could be said that MAX within live, using Ableton push, is
a predecessor of this work. on the other hand, if each module in a MAX
instance accounts for one module of this thesis environment; the use of
Calculeitor largely improves performative fluidity. In both cases, however,
the physical implementation of the composition environment that was
speculated would improve the possibilities for a user to produce musical
contents  fluently  thanks  to  the  presence  of  physical  connections  that
relate the different modules.

In  relation  to  current  live  programming  tools,  programming  generally
takes  time,  resulting  on  compositions  which  progress  gradually.  For
composition of conventional music, however, the best approach would be
to construct instruments that are performed on the live, and combine the
command-line  programming  interface  with  a  dedicated  controller  to
produce faster, more abrupt changes. The concept of command line plus
dedicated controller could lead to interesting results. The Virtual-Modular
environment  in  combination  with  Calculeitor  controller  could  be
developed  to  become  (and  in  a  looser  sense  it  is)  a  programming
environment plus a controller performance tool. In its state of modular

18As it was explained in the introduction, potential can be described as how
many  other  musical  compositions  are  not  performed once  a  musical
composition has been chosen.
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environment, however, still allows a fluid modification of the patch and in
performances it  proved being able to generate many variations. Since
the interaction is expressed in multiple interaction nodes, more than one
change can be produced at the same time, whereas in programming,
only one thing can be written at each given time (it is possible, however,
to postpone many changes to one single moment, or to associate many
outcomes  to  one  single  variable).  The  possible  implementation  of
additional  interfaces  for  the  modular  environment  e.g.,  with  better
playing pads, or mapping of other gestures could enhance fluidity while
keeping the current characteristics.

In  terms of  fluidity,  consequently,  the product  of  this  project  offers  a
unique  potential  in  terms of  composition,  because it  affords  to  easily
produce or alter musical ideas during the performance.

5.3.2 Flexibility

Within  one  performance,  deejaying  performances  can  present  many
variations  but  these  tracks  will  come  with  their  immutable
characteristics,  as  with  any  other  track.  To  give  more  flexibility  in
performances,  Native  instruments  Traktor introduced  the  concept  of
stems.  It  consists  on  the  commercialization  of  musical  recordings  in
separate tracks, thus allowing deejays to manipulate the pieces further.
This comes along with their own software support for such type of tracks.
This practice could be considered similar to the use of Ableton clips in
live performances. These pre-recorded material,  however,  still  possess
the constraints of a sample. In the scope of a single performance it is
possible to use enough variety of recorded material, so that nothing is
repeated throughout the performance. For an audience, there would be
an  appreciation  of  musical  flexibility  (all  the  presented  loops  in  the
performance are different) but the artist may be aware of the authoring
possibilities on their set. Additionally, parts of two performances of one
same artist may end being almost exactly the same, as it happens in
shows such as The prodigy, Daft Punk or Stephan Bodzin. In these cases,
the repetition across performances is intentional as to account for their
own tracks.

With modular  synthesizer  environments,  theoretically  anything can be
done, but, as explained earlier, some conventional composition features
are  not  trivial  to  achieve.  Conventional  music  making  in  Euro-rack  is
often characterized by this fact. Live coding environments such as Sonic-
pi sonic pi, being environments too, allow a very wide range of musical
outcomes, to the extent that is possible to make experimental music that
transgress the conventional  composition abstractions.  This variety can
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only  be  achieved  by  adding  custom programming  abstractions,  since
building more complex patterns via textual commands takes time. The
Virtual-Modular environment could be viewed in this sense as a set of
prepared abstractions which can be combined in different ways within an
environment, and modified through a physical interface.

While performing with DAW paradigm tools, it happens that despite the
patterns may be different, the alterations often end up being always the
same. One example of this, the difficulty to change the patterns on an
Electribe. In this case, the performances with Electribe are almost always
limited to switching among prepared patterns and alteration of timbral
characteristics of the sounds in the pattern. The same happens with the
more advanced interfaces such as Push or Maschine. The repetition of
modulations is less noticeable in these cases because there are more
available modulations and with a greater scope of pattern possibilities.
This may grant two applications of one same procedure to two different
patterns to sound like different alterations. One illustration of this is that
in  Maschine it  is  possible to  transpose any pattern one octave up or
down. Transposing a drum pattern results on the same pattern on a set of
sounds that are different but related to the original (playback rate was
doubled). The application of this same technique to two different drum
kits may not be noticed as the same modulation by a listener.

In  the case of  the current  Virtual-Modular  environment,  it  seems that
there  still  are  boundaries  with  respect  to  the  possible  modulations.
Despite the modularity, live performance may still be limited by a three-
dimensions boundary comprised of the available modules, the available
procedures or parameters on each module, and the time it takes to set-
up an intended composition system. In this  way the limitations are in
practice similar to the ones of DAW based environments, specially Push
(since  it  is  the  most  complete  DAW)  but  theoretically  offering  an
additional dimension which broadens the boundaries of improvisational
divergency.  In  practice  this  reveals  that  future  works  with  the
environment are paramount to enrich the composition possibilities: user
interfaces  that  allow  more  fluid  and  clear  interconnection  among
modules will expand the possibilities in the composition systems layer.19

In the current state of the environment, it is not possible to store and
recall  musical  compositions.  This  feature  is  theoretically  possible  and
could provide an additional source of variation. By recalling patterns or
fragments  of  patterns,  it  would  be  possible  to  produce  drastic
composition changes, similar to how it is possible by playing a new track
on a deejay deck.

In  conclusion,  the  modular  environment  improves  the  potential  for

19refer to Fig. 7.
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flexibility within its own specific area. While prepared performances can
produce more abrupt musical changes by using playback, the modular
environment  allows  some abrupt  changes  by  the  transformation  of
current  musical  material,  however,  without  the  need of  any prepared
material. In this sense, therefore, the modular environment provides a
wider  playground  for  flexible  musical  composition,  since  these
transformations can be chosen on the live performance instead of them
being determined beforehand in a preparation process. In addition to all
this, the speculated futures of this environment could provide with the
possibility of producing prepared abrupt changes by the combination of
the environment with sampling techniques.

5.3.3 Originality

The  Virtual-Modular  environment,  in  its  current  state,  affords  the
performance  of  an  original  composition,  because  in  addition  to  the
composition freedom present in performance paradigms such as looping,
it  offers  an  additional  dimension  which  is  composition  of  a  musical
system. It can be argued that the Virtual-Modular environment offers a
set of  procedures in the same way than any DAW based composition
paradigm. As it was discussed before in this work, however, it is possible
for musicians to prepare their own modules or tweak the behaviour of
existing  modules  to  produce  their  own  systems.  In  the  case  of  the
speculated  physical  implementation  of  the  environment,  it  will  be
possible  to  make  use  of  lower-level  composition  modules  which  can
account for a less constrained range of possible musical systems. In this
way musicians can attain  their  own signature musical  modulations  or
composition systems, and improvise new ones during a performance as
well.

Originality in deejaying has more than one aspect. In terms of the live
music  production,  it  is  very  likely  for  a  well  informed  audience  to
recognize tracks across different performances. Against this, there is the
vast variety of tracks constantly being composed and published, which
deejays could resource to. Some artists compose their own tracks. As it
was discussed at the beginning, many deejays sought originality in their
deejay performances by modifying the recordings to further extents, by
removing the  labels  from records,  or  by  looking to  the  most  obscure
producers to pick up on their sets. This leads the deejay performance to
become  original  in  a  different  degree  to  the  performer  than  to  the
audience. While a participant of the audience may perceive that she has
never listened to the tracks being played, the deejay is aware that these
come prepared beforehand. Originality in deejaying can also be attained
by using unique techniques and features. Carl Cox, for example has his
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signature shout “oh yes, oh yes” (Cox and Beyer 2018). In addition, he is
very active in the tweaking the music flow by fast and intermittent fades
of  volume,  and  cueing  of  tracks  (Cox  and  Beyer  2018).  Originality,
therefore,  can be attained at  deejaying in terms of  original  deejaying
techniques,  but  hardly  in  terms  of  composition.  The  product  of  this
thesis, in its current state however, cannot make use of musical tracks in
the same way as it is done in deejaying. In this sense, there is a whole
area of live production which is still  unattainable,  yet it  is  possible to
imagine concepts where a prepared track paradigm can be integrated
with the modular paradigm, as it was discussed before.

Other tools offer different extents of originality to a live performer. For
instance, a tool with very limited composition possibilities impose to a
greater degree an identity of the machine to the piece. One example of
this  are  the  Teenage  Engineering  Pocket  Operators.  Some  other
performance systems offer the authors a vast creative area. Examples of
this are Ableton or live coding environments like Tidal or Super Collider.
The performer can resource to  prepared music-altering procedures.  In
case  of  these  being  created  by  performers  themselves,  the  prepared
modulation procedures could grant an aspect of musical identity to the
modulation algorithms with which their performances are provided.

For more limited tools such as Maschine, the aspect of originality is again
different experience for the audience than for the performer.  In these
tools, alike almost all the other music making tools, it is possible to have
prepared sequences which, being exclusively created by the performer,
will  appear  as  original  to  the  audience.  These  performances  may,
however, be similar one to another of the same performer in case he
resources to the same prepared patterns, across more than one different
live performance. In the case of the Virtual-Modular environment, it is
possible to prepare some musical systems beforehand, which in turn is a
composition  environment  that  possess  a  field  of  possible  musical
outcomes. The initial system, however, can be altered in the real time,
allowing to drift out from possibly known composition procedures.

The  modular  environment,  therefore,  offers  the  same  affordance  for
originality in terms of conventional music composition in the live stage
than DAW based or loop based tools. With this environment, however it is
possible to create completely new musical transformations which are not
possible  with  the  other  mentioned  tools,  because  it  is  possible  to
improvise the modulation systems in a way that is not possible by using
other  tools.  Furthermore,  it  is  speculated  that  this  affordance  can  be
enriched by integrating new modules, creating new user interfaces, or by
expanding the versatility of current modules.
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6 Conclusion
Having created and evaluated the modular music
composition  environment,  the  relevance  of  this
project  in  relation  to  the  field  is  evaluated.  In
addition, the conclusion reflects upon the different
processes  of  this  work  and  their  effects  on  its
result.  This  evaluation  also  leads  to  some
conclusions which reach beyond the scope of this
project, and hopefully can be insightful for future
design processes.
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The modular environment, thus is not a good replacement of most of the
current tools for performance, because each performance technique has
different objectives in mind, which may not necessarily be divergency.
The  environment  rather  has  the  potential  to  bring  a  way  of
understanding  live  performance  of  electronic  music.  For  example,
divergence is appreciated by the audience on how the live-ness of the
performance  is  sensed,  otherwise  a  sampled  performance  already
presents a greater divergence. The environment, thus is an improvement
only  where  more  creative  freedom  is  intended  in  the  ambit  of
composition.

The fluidity comparison with Ableton considering the possible use of MAX
brings  an  interesting  point  of  view  to  the  idea  of  developing  the
environment physically: parallel to how in Max and Pure-Data there are
control  or  digital  signals  versus  DSP  signals,  the  composition
environment could be considered like the missing digital side to modular
composition in  order to  turn modular  synthesis  into a more complete
environment,  as  MAX and Pure-Data are,  with the added benefit of  a
much better  and multi-point  interface.  In  this  sense yet  another  new
research  path  is  opened,  this  is,  exploring  the  integration  between
continuous and discrete abstractions of modular music composition. This
exploration would be possible both, by using software, or using hardware
modular synthesizers.

The  composition  environment  could  enhance  the  sense  of  live  and
authorship.  Be  it  using  the  virtual  environment  provided  that  a  clear
representation is displayed by showing the on-going operations (in a way
analogous  to  the  visible  code  in  live  programming)  or  by  using  the
physical implementation of the environment. The presence of a controller
whose feedback is shared between the performer and the audience shifts
the  ritual  of  a  laptop  performance  into  a  ritual  of  instrumental
performance.  Thinking  of  the  classical  performances  with  mechanical
instruments, the awareness of performance from the audience is given
by  the  visibility  of  relation  between  the  performer’s  actions  and  the
musical  results.  In  the  same  way,  a  visible  manipulation  of  digital
composition devices could lead to an increased sense of live performance
in comparison to other live performance tools.

According  to  the  comparison  with  other  performance  paradigms  and
tools,  the  composition  environment  seems to  still  offer  boundaries  to
what  is  musically  possible.  In  its  current  state  of  development,  the
environment  offers  improvisation  possibilities  perhaps  comparable  to
using combinations of other tools. This is caused by the currently used
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interface,  which  makes  the  construction  of  patches  non  intuitive  and
limited.  An  improved  interface  would  account  better  for  the  relation
between modules, and specially, provide a plurality of input and output
connectors.  In  such  case,  the  versatility  of  the  environment  would
provide  with  a  greater  extent  of  composition  possibilities,  above  any
current digital tool.

The  initial  insight  that  gave  a  starting  point  for  this  thesis  was
understood intuitively, and there was some work to be done in order to
understand  the  exact  description  of  the  problem  through  different
processes. The initial inspiration was driven by a frustration while using
currently available live performance tools. Being aware of a subjective
frustration despite that these tools are technologically advanced and well
thought was intriguing and also problematic as how to define what a
better tool should be. The initial process of surveying all the other tools
available in the market and reviewing their manuals finally provided with
the  needed  insight,  as  described  in  the  Musical  devices  and  their
performance paradigms chapter. As said, these tools only offer musical
modulations when there are dedicated procedures to them. This briefly
defined fact  was one of  the many surprising revelation that  emerged
from this project. This process of surveying also served to give a scope of
development,  as  it  was  realized  that  tools  divergent  music  making
already existed, only that they were not oriented to conventional music
making. This further underlines the utility of surveying current alternative
approaches  to  a  certain  design  problem,  be  there  candidates  for  the
exact same problem, or to a problem which is similar.

The  development  steps  to  follow  were  fuzzy:  after  having  defined  a
project, there was only the idea of making a digital (discrete) modular
environment for music composition. In hindsight, the process that was
described  here  as  Composite  elements  environments appears  as  an
arbitrary starting point. The idea of designing a modular environment has
many possible approaches, and at that point there was no knowledge
about available design approaches for this task. This arbitrary exploration
start point had the advantage of providing a view into the intricacies of
this design task without yet knowing the best approach. Thanks to this
process,  a  design approach emerged which finally  allowed the design
process  to  take course from a less  arbitrary  starting  point,  as  it  was
described  in  the  finding  the  primary  elements  of  the  environment
process,  that  was  successful.  It  was  crucial,  for  instance,  that  the
exploration  with  the  Virtual-Modular  environment  considered  discrete
modules  which  would  communicate  using  an  array  of  numbers.  It  is
interesting  to  note  however,  that  the  definitions  derived  from  this
process  were over-specified;  meaning that  later  in  the process  it  was
discovered  that  some  different  interpretations  of  the  rules  could  be
acceptable (like for example having more than one input or more than
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one output for complex modules).

It  can  be  considered  that  from  the  perspective  of  designing
environments, the composite elements process was a learning process,
and  the  following  processes  were  the  application  of  that  lesson.  For
future environment design projects, provided that the initial information
is sufficient, it will be possible to start with the non-arbitrary approach of
buildification. This buildification approach may not be limited to design of
physical processes, but it may as well prove useful for other designs such
as social or economic processes. The downside of this approach is that it
requires knowledge at least of  some of the possible systems that are
desired  from  the  environment  in  question.  The  discovery  of  this
buildification process, was on its own a very valuable lesson to be applied
in the future, whenever a design process is related to systems theory.

The  aforementioned  process  revealed  that  a  step  previous  to  the
definition of design specifications or methods could be a good addition to
the design process of complex products (such as an environment). This
additional  step  would  consist  of  making  a  mock-up project  only  to
understand the complexities of the task in hand, as well as to reveal the
designer’s  own  intuitions  in  relation  to  the  project.  In  more  general
terms, it was learnt that the production of a short project can be part of
the  process  of  understanding  the  problem.  A  production  process,
consequently, may not be exclusive to the production phase of a project.

The design of the physical device had some clear limitations which could
have only been solved with more resources and time. As it was described
in reference to the design of  Calculeitor hardware, an almost arbitrary
decision was taken to use a led-buttons matrix in a similar way to similar
devices such as  Novation Circuit or  Novation Launchpad. It would have
been as well possible to think about embodied interfaces, or a live coding
interface,  probably  leading  to  different  environment  concepts.  As  a
project that looks for new approaches to perform music, it would have
been interesting to explore the relation between a modular environment
and the physical user interaction beyond a controller. In this aspect, the
only user interface propositions were taken from the other projects that
were surveyed at the start.  On one hand this  simplification allowed a
more dedicated exploration in the  environment aspect of the product,
since such hardware could be manufactured out of standard parts. On
the other hand a very valuable aspect of the live presence that these
interfaces could produce had to be left  for  future projects:  a  gestural
mapping interface that heightens the perceivable live-ness to a further
extent,  as  expressed  in  the  Sound  Gloves research,  considering  the
audience not as mere listeners, but also as another user of the musical
interface (Lai and Tahiroğlu 2012).
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Regarding the design of the physical product, it is clear that this product
does  not  communicate  clearly  enough  about  its  capabilities  to  an
unaware user and would not be a self-explanatory product. The design of
the physical product had to be limited to what could be helpful for the
development process of the environment. This is a clear consequence of
having started the process of designing the hardware before defining the
design approach. As it was demonstrated by the audience of Calculeitor
party, it is not possible to understand the composition elements of the
performance without the aid of an additional graphic representation. In
this  sense,  the  design  of  the  hardware  was  more  than  anything  the
design of a development tool that allowed the virtual environment to be
used in the real context. It also helped determining what is realistic to
expect  hardware  as  parts  of  a  network.  The  exploration  about  the
networks  design  process  had  an  important  impact  about  what  the
limitations  on  the  virtual  environment  experimentation  needed  to  be.
Without  a clear  knowledge of  the hardware limitations,  it  would have
been difficult not to prototype environments virtually, which later would
be impossible to build as hardware.

The  exploratory  process  with  the  Virtual-Modular  composition
environment was one of the core components of the project, where all
the details about how modular performance could work, were tested. The
fact of being involved in the design of a user interface such as Calculeitor
naturally  led  to  the  intent  of  doing  user  testing.  Some  tests  were
conducted with users, but this method further proved that this project
should  not  target  making  easier  user  interfaces,  but  is  about  the
development of a new method to perform live. The user testing became
unfruitful because it took too much time for the participants to learn how
to use the interface before being able to start with user interface testing.
This is because the Virtual-Modular environment is very different from
other composition tools, and it takes time to get acquainted with the idea
of discrete and modular composition. In addition to that, there was the
added difficulty that the patching of modules was not visible at all times,
and this required a highly developed acquaintance with the environment.
While it was possible to solve these issues by implementing a graphical
user interface that would reflect the environment more intuitively, the
focus  was  limited  instead  only  to  the  divergent  possibilities  of  the
environment. It is clear that users with enough interest can also learn to
use  difficult  instruments,  but  in  order  to  generate  this  interest,  the
instrument  needs  to  offer  unique  expressive  possibilities  in  the  first
place.  A  useful  aspect  from  the  user  testing,  however,  were  the
additional  observations  and comments.  As  the tests  were targeted to
electronic music tool users, each one had their own different views that
provided  the  exploration  with  a  rich  set  of  ideas  to  develop.  These
insights now form part of this project in many different theoretical and
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practical aspects of this project.

One interesting topic that might become of use to other environments
such  as  live  programming,  is  the  casting  of  notes  between  different
notation systems in a way parallel to casting of numbers in programming
languages. As expressed in the design of the harmonizer,20 there is not
only one approach to cast a chromatic note into a scale. These different
approaches  could  lead  to  ideas  such  as  decimal  points  in  a  note  (a
chromatic  note  numbered  1  counting  from  0  can  result  into  a  C.05,
expressing a C# in a major scale). Such expression suggests the idea of
generating  a  set  of  musical  data-types  such  as  frequency,  tone,
chromatic and diatonic major, and offering different ways to cast across
types.  This  is  not  an  idea  that  might  be  of  use  in  the  case  of  the
composition environment, but it definitively is useful in the context of live
programming environments.

One of the most useful  prototype testing methods during the process
were the live performances. As described, live performances revealed the
most  important  aspects  of  such  development  by setting  it  under  the
intended environment: an expert user and a live dance social gathering.
While developing in lab conditions,  it  is  easy to think of  performance
patters that are highly complex and nuanced because these afford more
interesting possibilities. In context, the limits become clear about how
complicated the use of the environment can be before causing problems
to  an  expert  user.  The  success  metrics  also  are  very  clear:  whether
people remain engaged with the music or not.

Another valuable lessons learned from the live performances is the major
role that emotional factors play. The first and most clear example was the
failure to rescue a stuck performance in Ääniaalto, where despite it was
technically  possible  to  proceed,  it  became  emotionally  impossible.
Another, less clear example that occurred in performances which were
not listed in this thesis but were still  based on the use of the Virtual-
Modular  environment21 revealed  the  strong  relationship  between
audience and performer in the case of improvised performances. In two
cases  where  the  performance  was  initiated  with  no  audience,  it  was
realized that improvising music for nobody was surprisingly difficult. In
these  same  performances,  when  an  audience  gathered  to  listen  and
dance, the flow of improvisation became easier and more effective. This

20Where a number can be expanded to a scale, providing one input number to
each diatonic note, opposed to rounding the number to the nearest diatonic
note, hence having possibly more than one input number on each output

21two  underground  electronic  music  parties,  two  performances  in  parties
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last  effect  was  not  mentioned  in  the  discussion  because  beside
demonstrating the profound impact of emotions in the performance, it
was  not  possible  to  discern  whether  this  effect  took  place  as
consequence of a real audience to performer relationship or a particular
personality  trait  of  the  performer.  Additionally,  the  same  effect  was
observed when using other performance tools.

Together  with  the  live  performance  testing,  the  environment  tests
without  audience  were  very  predominant  to  the  conception  of  new
modules. Without the pressure of an audience, it was possible to explore
into  more  complicated  or  experimental  patterns  which  might  not
necessarily result in conventionally musical results. This testing method
provided  with  the  creation  process  of  many  different  modules,  when
amidst a performance, new modules were imagined that would be useful
in  such context.  All  the modules apart  from the initial  ones (midi  IO,
harmonizer sequencer, and preset-kit) were initially thought from these
experiences. One limitation of this method is the coupling of the user
interface to the characterization of modules. One example of this is how,
all the modules are thought as single input and single output modules
due to the way these can be patched through the Calculeitor interface.
Were these modules physical units, or would have these modules been
patched via a graphical user interface, the conceived new modules would
have  had  different  characteristics,  and  the  emerging  composition
techniques would be different. The described drawback from this method
needs to be taken into account if this environment is translated into a
hardware implementation: the modules need not to be replicated in the
same way, since hardware interfaces will have different affordance than
the virtual one, which was taken into account in the environment future
section.

Testing without audience also served to improve the interfaces to achieve
better  fluidity:  one  clear  example  being  the  outside  scroll interaction
pattern,  where  it  is  possible  to  change  a  parameter  of  a  module  by
selecting it and scrolling the encoder, without entering into the module. It
is clear that the user interface improvements from these tests are limited
to  the  Virtual-Modular  implementation.  The  same  outside  interactor
example  illustrates  this:  in  a  hardware  implementation,  all  the
parameters will be already physically present.

The development of this project led to the production of an interesting
new tool to improvise conventional electronic music in ways which may
have not been possible before. The more interesting result, however from
this  project  has  been  the  discovery  of  all  these  new  processes  and
complexities that are related to improvisation and live performance such
as social interactions, the role of emotions, and the extent to which the
performer’s  interaction  with  the  music  is  noticeable.  Additionally,  the
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futures for the environment that was designed in this project transcend
the area of interest of this project in particular and could lead to many
new  areas  of  exploration  such  as  collaborative  composition,  modular
gestural mapping, and incursions in the mixture of digital and analogue
modular processes to the creation of music.
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7 Appendix
Additional documents that can illustrate better the
implementation  of  the  Virtual-Modular
environment, including a basic usage tutorial, and
a description  of  some of  the  modules  that  were
created. Note that in the case of the tutorials, the
name Polimod was devised to refer more easily to
the modular environment.
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7.1 Usage tutorial: Calculeitor 
interface introduction
7.1.1 Button Names

Function name of each button in calculeitor, which is effective in both, the
physical and virtual contexts

7.1.2 General button functions in a module

This is a general description of the interface buttons for an overview. If
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you don’t  understand something, don’t  worry,  it  will  come clear later.
This  guide  could  serve  you  as  a  reminder  while  you  advance  in  the
tutorials.

• Value  (rotation  encoder):  changes  the  parameter  that  is  being
displayed on screen. Rotating it right (clockwise), raises the value of
the parameter,  and reduces the value when being rotated to the
opposite direction.

• Mode: works like a shift  button. This will  make sense later, but in
general terms it changes the function of the buttons, or momentarily
alters the module’s response when pressing buttons.

• Event: when you are in a module, this button lets you select what
message it  outputs. When in  super-interactor mode, this button is
used to mute.

• Settings: when in a module, this button displays a settings menu in
the  buttons  matrix.  By  pressing  different  buttons  in  the  matrix,
different global parameters of the module will  be displayed in the
screen, allowing to change them (using the encoder). When in super-
interactor, it is used to delete modules.

• Patching: this button is used to change between the super-interactor
and modules. Think of it as the esc and enter keys of your computer.

• page a-d: if a module contains multiple pages, (e.g. a sequence that
doesn’t fit in the 16 buttons) these buttons serve to select among
them. A bit like scrolling with the mouse, or changing tabs in a web-
browser.

• Button matrix 0-16: these buttons are used to perform. Depending
on  the  module  and  whether  there  is  a  menu  open,  they  serve
different purposes. The matrix is where the magic happens.

• Record  a-d:  among the  other  modules  that  are  connected  to  the
current  module,  these  buttons  enable  recording.  This  allows  for
example, to record a drum loop into a sequencer without having to
switch into the sequencer.
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7.1.3 Super-interactor

super-interactor

The  super-interactor  is  the  main  interface  of  the  virtual  Polimod
environment.  In  this  mode,  it  is  possible  to  create,  open,  move  and
remove modules. The button functions are different in this mode than
when in a module.

When  the  application  opens,  it  will  be  in  the  super-interactor  mode.
Different buttons in the matrix may appear lit in different colours, while
some other buttons may appear unlit. These coloured buttons represent
one module each. Modules can be selected by tapping them.
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7.1.3.1 entering and leaving a module

When in the super-interactor mode, it is possible to open the interface of
a module by tapping the button that represents the module, and then
pressing the “patching” button.

When a  module  is  in  focus,  pressing  the  patching  button,  closes  the
module and goes into the super-interactor mode

tip:  it  is  possible  to  switch  from one module  to  another  fast  by
holding  the  patching  button,  and  releasing  it  after  the  desired
module’s button was pressed.

Connecting and disconnecting modules, steps 1-3

1. In super-interactor mode, tap the matrix button which appears blue.
That colour usually represents a sequencer.

2. The button matrix that was previously blue turns white

3. Now press the “patching” button.

4. The contents of the screen change, and the buttons matrix turn off,
displaying a yellow play-head which advances  in  the matrix.  This
means that the calculeitor is focusing a sequencer.
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Connecting and disconnecting modules, step 4

7.1.3.2 connecting and disconnecting modules

A  relation  can  be  established  between  modules  by  using  the  super-
interactor mode. It is only possible to select outputs for each module.
Connections among modules can be seen by selecting the module: the
other  modules  that  turn  red  are  the  modules  that  are  connected  as
outputs of the selected module. These connections can also be toggled
by holding the module’s button and pressing the output module’s button
while that button is being held.

1. In super-interactor mode, select the module named harmonizer. It is
coloured yellow.

2. Observe that one module turns red. That module is the midi output
module.
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Connecting and disconnecting modules, steps 1-2

3. Press  the  selected  harmonizer  button  again.  While  that  button  is
held, press the midi output module button (which is currently red).

4. The midi output module button turns grey. This means that these
two modules are not connected any more.

Connecting, steps 3-4

5. Repeat the step 3. The midi output button turns red again, meaning
that the harmonizer is connected again to the midi output.

6. Repeat  this  operation  with  other  modules.  Try  connecting  and
disconnecting.

Tip: it is possible to see the input modules by selecting the module
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in question, and then pressing the mode button. The input modules
in this case will turn cyan (light blue)

7.1.3.3 deleting modules

Modules  can  be  deleted  and  created.  To  delete  a  module,  tap  the
module’s button while holding the “settings” button.

1. In super-interactor mode, press the “settings” button, which appears
blue.

2. The screen displays the text “delete module!”

3. Press one or  more than one module button in the button matrix,
while still holding the “settings” button.

Deletion of modules, steps 1-3

4. When the “settings” button is released, the selected modules will be
deleted.

Tip:  when a  module  is  selected for  deletion,  it  gets  muted.  The
deletion of a module can be cancelled by tapping its button again.
Note, however, that once the “settings” button is released, there is
no undoing.
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7.1.3.4 creating modules

The creation of a module follows two steps: selecting an empty button
(which  is  not  lit),  and  then  selecting  the  desired  new  module  type
throughout the module creation menu.

1. While in super-interactor mode, tap a button in the button matrix
which is not coloured (unlit)

Creating module, step 1

2. The button matrix changes colours. It is now displaying the available
modules to create.

3. Tap many buttons in the button matrix. The name of each module
will be displayed in the screen. Each module type is represented by a
colour as well.

4. Select the magenta button, which is named narp.

5. Press the “patching” button
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Creating module, steps 4-5

Tip: inside the module creation mode, it is possible to exit without
creating  a  new  module  by  pressing  the  “settings”  button.  This
closes the menu, and goes into super-interactor mode again.

6. Calculeitor goes back to super-interactor mode, and the new module
appears in the matrix button that you pressed initially.
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Creating module, step 6

Extra points: connect the new narp module to any of the modules
that are displayed yellow. Then, enter into the narp and try pressing
some buttons in the matrix! Then try changing the output of that
narp to different modules.

Tip: if there are more than 16 modules available, the creation menu
has pages which can be explored by pressing the “page” buttons.

7.2 Usage tutorial: Your first 
performance
1. Run the Polimod Virtual-Modular environment, and the synthesizer(s)
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of your choice.

2. Once  the  super-interactor  is  displayed,  press  one  of  the  yellow-
coloured modules, and open it

First performance, step 2

3. Play sounds by pressing the buttons.
◦ If  there  is  no  sound,  it  means  that  your  chosen  synthesizer

might have no sound assigned to one of the channels. In this
case, go back to the super-interactor, and repeat the step 3.

4. Press the record-a button. It should turn red
◦ If  it  does  not  turn  red,  it  might  be  because  no  module  is

connected to the current module. In the default patch, all the
yellow modules are supposed to have one module connected to
them.  Simply  close  the  Virtual-Modular  environment  (use
control+c key combination in the command window), and open
it again.
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First performance, steps 3-4

5. Play a short pattern, the default tempo is 120 bpm.

6. Press the red button right after you finished playing the pattern.

7. The pattern you played should repeat, with a quantization applied to
it.

8. Press the “patching” button, and enter into the module coloured blue
which  is  right  above  the  module  that  you  just  selected  (the  last
selected module should appear white in this context).
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First performance, step 8

9. You should be able to see the sequence that you just played.

10. Modify the sequence: press different buttons in the button matrix, to
program events

11. Select different notes: press the “event” button (second button in
the top) and rotate the encoder, to select different notes or sounds.
Keep  the  number  below  16  for  drums,  and  do  not  use  negative
numbers.
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First performance, step 11

The sequencer works by layers, allowing you to produce polyphonic
compositions. Each layer is one note (it can be a bit more complex
than that, but let’s leave it for later). Rotating the encoder changes
your point of view from one layer to another.

Tip: to remove an event, you need to be in the same layer. Events
that are removable appear white or cyan (greener blue)

First performance, colour symbology

12. Repeat this operation as many times as you want. You can combine
this tutorial with the concepts explained in the “calculeitor interface
introduction/super-interactor”.

◦ Try creating new sequences and removing older ones.
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◦ Try connecting the sequencers to other modules.

Are  you able  to  discover  your  own ways  of  performing already?
Annotate your discoveries so that you can replicate them!

7.3 Usage manual: event 
configurator
The event configurator is used in most modules. It is used to select a
message, which will presumably be sent to the module’s output. Think of
it  as  a  word  selector:  it  select  what  the  module  will  tell  the  other
modules.

An  event-message  is  composed  by  many  numbers.  With  the  event
configurator, it is possible to select each of these individual numbers.

7.3.1 Pre-configured events

While you hold the event configurator, some matrix buttons appear blue,
and some other appear magenta. The blue buttons are used to select
pre-configured events (for easier use).  By tapping these blue buttons,
different types of events are configured for you. The most used is the
first one, named  note trigger. The  note trigger events are those whose
first number is 1.

The last blue button, named manual, lets you manually configure each of
the four numbers of the event.

7.3.2 About events

The effect that an event-message has over a module depends on the
numbers that it  contains. The most important number is the first one
(also named num[0], or head); this one determines the function type of
the event. Some examples of function type are  clock beat,  trigger note
and  change rate. It is analogous to the first nibble of the MIDI header
byte. The other numbers usually give more details about that action. For
example,  if  the  event  is  of  note type,  the  following  numbers  may
determine the note number (pitch, or timbre), channel, velocity, among
other things.

Knowing the role of each number depending on the header can be a bit
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tricky to remember. This is why pre-configured events may be useful: if
you select a clock event, the following numbers will be renamed as cycle
and micro step accordingly. This makes it easier to choose an event. Try
different things! If you were strongly expecting something to happen, but
it doesn’t, it could mean that you have a feature request, specially once
you become well acquainted with Polimod.

There is a known bug where a pre-configured event gets a header
that doesn’t correspond. We haven’t figured out yet what causes
this.

7.4 Usage manual: Sequencer
7.4.1 Recording

In default mode, a sequencer tries to adjust the length of the sequence
to the performed pattern, without leaving silent gaps. This means that
most of the times, parts of the recording are cut off the sequence.

• These  events  can  be  recovered  using  “shift  +  compensate”
technique

• The recording mode can be changed so that the length does not
change

• By  default,  the  sequencer  goes  to  “overdub”  mode  right  after
recording.

You  can  change  the  recording  behaviour  by  using  the  recording
configurators. These are present in the last buttons of the settings menu.

7.4.2 Creating and removing events

Events are created simply by pressing a button in the matrix. If an event
is present in the same button as the pressed, and this event has similar
characteristics, it will be removed.

The duration of the events is equivalent to the amount of time that the
button is pressed when creating it.

To remove events regardless of the layer, press the shift button (first one,
top row). Events of different header, however, can not be accessed using
this technique.
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From practice, it becomes clear that it is better to dedicate sequencers to
specific functions. This makes the navigation and edition a lot easier. If
there are too many different events (e.g. clocks, and notes in the same
sequencer, or many different voices and instruments) in a sequencer, it
becomes hard to remove specific events.

7.4.3 Choosing the event / layer

In  this  sequencer,  layer  is  equal  to  the  event  being  created.  The
underlying assumption is that you will rarely need to create two events of
similar characteristics at the same time.

To  select  the  event,  press  the  event  button;  this  displays  an  event
configurator.  The  event’s  first  number  (note,  if  it  is  a  trigger  event)
becomes the layer. The numbers 2 and 3 are ignored with respect to the
layer.  The  events  whose  number  2  is  different  than  focus,  however,
appear in cyan instead of white.

By pressing the shift button (first, top row) you can set the focus to every
event with the same header. Events with other headers appear red. This
is useful to remove events without having to meticulously go layer by
layer.  To  remove  events  of  different  headers,  however,  there  is  no
shortcut.

When an event is removed using shift, the event configurator is adjusted
automatically to be the same as the removed event. This is handy for
when you need to move an event to a different place.

7.4.4 Changing the length

The sequencer offers many different ways to change the length, because
changing length can be a way to perform. All the length configurators are
present in the configuration menu;  settings button,  third button in the
top row.

7.4.4.1 Traditional length adjustment

• While holding the settings button, press matrix button 0.
• The screen should read “set loop length” and " to 16"
• You can release the buttons.
• Rotate the encoder. This will change the loop length value. The effect

will become very clear if you make the sequence shorter than 8.
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7.4.4.2 Folding

Folding is  changing the sequence length to  the double or  half  of  the
current length. It will be easiest if you set the sequencer length to 8 or
16, to understand the effect of folding.

7.4.4.3 non-destructive folding

• while holding the settings button, press the matrix button 1

• The screen should read “set fold” plus something like “2^4>16”

among  the  numbers  2^4>16,  the  first  number  represents  the
folding base, and the second number the exponent, and the third
number is the current loop length. If you wish to use other base,
such  as  3  (meaning  that  the  length  triplicates  instead  of
duplicates), hold the shift button while you rotate the encoder22

• Rotate the encoder. The loop length changes drastically to halves or
doubles of the current length.

• The length can be re-established, and the sequence remains. This
means that you can use non-destructive folding to hide patterns that
can appear later.

7.4.4.4 destructive folding (folding!)

• while holding the settings button, press the matrix button 2

• The screen should read “set fold!” plus something like “2^4>16”

• Rotate the encoder up. This duplicates the sequence length, but the
new sequence instead of being blank, it is a copy if the first half of
the sequence.

• Rotate the encoder down. The sequence out of the range is not only
hidden, it is also cleared.

Needless to say; choosing the wrong type of folding can be fatal to
a performance. Always put attention to whether the action contains
the  “!”  character.  This  character  indicates  that  the  folding  is
destructive.

22not implemented yet.
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7.4.5 Paging

If the length of the sequence is larger than 16, it is possible to edit the
entire sequence by using the page buttons. For lengths higher than 128
it gets harder to navigate.

7.4.5.1 Page buttons

The second row of buttons are used to jump into the pages 0 to 3 (steps
0 to 63). The buttons underneath the matrix buttons are used for the
pages 4 to 7 (steps 64 to 127).

Any  page  can  be  selected  by  using  the  page  configurator.  This
configurator is selected by pressing the matrix button 5 while holding the
settings button.  The  screen  should  read  “set  page”,  followed  by  the
current page.

7.4.6 Shifting the sequence

By shifting the sequence, two different things can be understood, both of
which are possible:

• changing  the  position  of  the  play-head,  which  changes  the
coordination of the sequence with respect to any other sequence

• changing  the  position  of  the  sequence  within  the  loop,  without
affecting  its  coordination  to  other  sequences  (the  sequence  is
actually shifted, but the play-head is shifted too, to compensate).

7.4.6.1 Compensated shift

• While holding the settings button, press the matrix button 3
• The screen should read “set shift+cpte.” and “to 0”. This stands for

“shift and compensate play-head position”
• Rotate  the  encoder  either  side,  explore,  for  example  going  down

from -8 and then up to +8. Observe what happens to the sequence.

Compensated shift is specially useful to put the events where you expect.
A typical situation is that, after recording, say, a drum pattern, the strong
notes end up in odd buttons. It is often expected in a sequencer that the
strong events are placed in even buttons, such as the button 0.

Another use to this shift, is to hide parts of the sequence. Let’s say that
you want to smoothly make a melody to disappear. You can slowly shift
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the melody outside of the sequencer boundaries,

7.4.6.2 play-head shift

play-head  shift  merely  adds  or  subtracts  to  the  play-head  position,
causing the sequence to offset from its original position.

• While holding the settings button, press the matrix button n¤7 (it is
right over the compensated shift button!)

• The screen should read “set drift substep”
• Rotate the encoder left or right. The sequencer changes its position

This  technique  is  specially  useful  when  you  have  the  sequencer  well
synced to other sequencer or gear, but the step position is not right. First
determine how many steps you need to offset it with respect to the other
sequences, and then rotate the encoder for the same amount of clicks
that you calculated.

Other  ways  to  offset  the  sequencer  are  by  external  module  or  by
jumping.  When a  sequencer  receives  a  trigger  on  (or  note)  event,  it
jumps to the step indicated by the number [1]. It is possible to manually
jump to a step by pressing shift+event+the desired step button. 

7.4.7 Sequencer rate

A sequencer maps directly one step per step. It is possible, to make it
faster or slower (e.g. double or half the speed). This affects the amount
of  clocks  that  it  takes  to  advance one step;  and the length of  those
events too (for the case of trigger events).

• While holding the “settings” button, press the matrix button number
6 (third button in the second row.)

• The screen should read “set step length” and “to 1”
• Rotate the encoder. This effectively causes the sequence to run at

different speeds.

This technique is specially useful  for events that need to happen less
often. Let’s say that you have one sequencer with length 5, while all your
song is playing at 4/4 metric. In this case, you can add a sequencer that
resets the position of the 7 steps sequence back to 0 every 128 steps.
Another example is when you are using the sequencer to set the tonality
of a melody at every repetition of the melody.
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7.5 Description of various 
modules in the Virtual-Modular 
environment
In devices that have any type of sequence, there are three different step
measures, that are related. A step, is the musical step that we are used
to, in a sequencer, the step corresponds to the position of the playing
head. A sub-step is a translation between steps from a clock sync source,
and the sequencer’s step. The reason for having a sub-step, is to allow
the  musician  to  have  slower  sequences  that  wait,  for  example,  eight
steps from the clock to advance just one step in the sequencer. If the
example sequencer step rate is set to 1, then steps are equivalent to
sub-steps. The smallest clock measure so far are the micro-steps. The
idea of micro-steps are taken from the MIDI specification, where 24 clock
sync signals are specified to conform one quarter note (“Summary of
MIDI Messages” 2018).

Those modules whose function principle is simple are presented with a
code which explains the basic working principle. The code used in the
actual prototype is more complex because it needs to be secure against
failure and interact with a user interface. For every case the module also
implements more features which enhance the versatility of the module.

A  function  mapping  of  inputs  is  also  provided.  In  the  context  of  the
context of Virtual-Modular environment only two inputs were possible per
module given the interface that was used. These are provided in a list,
for each input (main and recording inputs), a list of headers are provided
and  what  effect  does  each header  produce  in  the  module.  As  it  was
described,  the  event-messages  are  defined  as  variable  duration,
consecutive  numbers.  The  header  being  the  first  number,  and  the
following  numbers  being  named  consecutively.  According  to  this  the
event-message is described as [header, number 1, number 2, ... , number n ].
Some of the functions that are described in this list may have not been
yet implemented at the time this document was printed.

7.5.1 Preset-kit

Minimal procedure (expressed in javascript):

Module=function (environment){
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    var self=this;
    var kit=Array (16);
    this.onMessageReceived=function (message){
        if (message[0]==headers.triggerOn){
            if (kit[message[1]]){
                if (kit[message[1]].active) self.sendMessage (kit[message[1]]);
            }
        }
    }
    function setPreset (number,event){
        kit[number]=event;
    }
    function mutePreset (number){
        kit[number].active=false;
    }
    function unmutePreset (number){
        kit[number].active=false;
    }
}

A preset-kit offers a fast way to map a set of 16 event-messages to other
16 event-messages. This make it  possible to remap the outcome of a
sequencer  without  having  to  edit  the  sequence  step  by  step.  It  also
allows to filter events of a sequence by muting or unmuting presets.

• Inputs:
◦ Main:

▪ Trigger on: the preset numbered with the event-message
number  1  is  triggered  to  the  output.  All  the  numbers
present in the incoming message,  but not defined in the
preset are copied to the output as well (this provides the
possibility  to  have  dynamic  velocities  on  synthesizer-
triggering messages, for example)

◦ Recording:
▪ Record default: the recording header is removed from the

message, and all the subsequent numbers are shifted left.23

The  resulting  event-message  is  assigned  to  a  preset
number.  The  preset  number  to  change  upon  recording
message is  consecutive,  meaning  that  they  are  recorded
consecutively. If the last preset is reached, this count starts
from 0.

7.5.2 Harmonizer

Representation:

Minimal procedure (expressed in javascript):

23in  most  programming languages  there is  a  shift () function  which  does

159



Module=function (environment){
    var self=this;
    var scale=[0,2,4,5,7,9,11];
    this.onMessageReceived=function (message){
        if (message[0]==headers.triggerOn){
            var noteIn=message[1];
            var octave = Math.floor (noteIn / scale.length);
            var grade = scale[noteIn % scale.length];
            var noteOut = grade + (12 * octave);
            self.sendMessage ([message[0],noteOut]);
        }
    }
}

General:

Harmonizer maps inputs into outputs that belong to a musical scale, thus
creating an abstraction of harmony. A musical scale consists on a subset
of event-messages out of a 12 note chromatic scale. From an incoming
trigger  event-message,  an  octave  number  and  grade  number  are
extracted by using  floor (number[1]/scale.length) and  number[1]%scale.length
respectively.  These  two  factors  are  used  to  translate  the  incoming
number 1 into a scale grade24 and an octave number. The scale grade is
selected from the scale array, and added to the extracted octave times
12.

In this mode of operation, the output range of the incoming stream of
events is expanded. This is because the number of selected output notes
can only be the same length or smaller than 12, which is the times the
extracted octave is multiplied by. This has proven to be problematic in
some specific  scenarios.  For  instance,  changing the  scale  to  a  newer
scale with smaller amount of grades could cause the resulting pitches or
numbers to change their range drastically. To solve this problem, in the
described mode of operation there needs to be a modulation centre note.
This  one determines which note does not  get  transformed. The notes
lower to this pivot notes get lower than the input, and the notes higher to
this pivot note get higher. This is a process similar to scaling in the ambit
of graphics. The selection of a pivot note in this case is analogue to the
selection of a centre in a scaling operation.

An alternative mode of operation for this module, which is not prone to
drastic range changes is to round the incoming notes into grades instead
of  expanding  them.  For  each  incoming  note,  the  octave  and  grade
number are extracted. Instead expanding the range of the incoming note

24grade is defined here as the number of the note among the subset of notes
in a scale scale rather than chromatic note (e.g., note 2 is C# in chromatic,
but D in C major).
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by mapping it into an array, this mode intends to keep the range and
round the incoming note to the nearest grade. For this, the octave and
grade  extraction  functions  are  respectively  floor  (number[1]/12) and
number[1]%12. Among the scale array, the number is sought which as the
smallest  difference (higher  than 0)  from the extracted grade number.
This found number is used as the output grade number, to which the
octave times 12 is added.

The  harmonizer  has  16  memories  for  scales,  that  can  be  configured
freely  to  any  possible  scale  within  the  western  12  chromatic  notes
system. This allows the fast toggling between different pre-set scales or
chords.  This  allows many interesting  modulations;  for  instance,  if  the
harmonizer is transforming the output of a short musical sequence, this
sequence  can  be  modulated  along  each  repetition  to  form  different
structures, obtaining a modulated melody sequence. It is also possible to
use  a  harmonizer  to  obtain  unexpected  mapping  from  patterns  of
percussion.

A harmonizer features a keyboard style interface. The recording output of
a harmonizer consists on the keyboard notes that are pressed i.e. the
grades. This allows, as explained, to re-map the recorded sequence into
another harmony. The switching of scales is also recorded.

A harmonizer  needs  to  have two event-message configuration  layers:
one layer of configuration edits the messages that are sent to the output;
these overwrite the information coming from the input. The second layer
contains the notes that are used in the keyboard, and thus recorded.

• Inputs:
◦ Main:

▪ Trigger  on triggers  a  note  on.  The  second  number  is
remapped to belong to the chosen scale.

▪ Preset  change changes  the  current  scale,  effectively
changing the way how the incoming notes are remapped to
grades. The second number determines the new scale to
use.

▪ Rate  change changes  the  base  note,  effectively
transposing  the  output  chromatically  according  to  the
number 1.

◦ Recording:
▪ Record default The recording event-message is shifted to

remove the header. The resulting event-message is used as
the output operation of the harmonizer.

▪ other recording events will  be designated in the future to
activate  or  deactivate  grades  in  the  scale,  and  alter
different parameters.
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7.5.3 Mono-sequencer

minimal procedure (expressed in javascript)

Module=function (environment){
    var self=this;
    var pattern=Array ();
    var playhead=0;
    this.onMessageReceived=function (message){
        if (message[0]==headers.clock){
            if (message[1]%message[2]==0){
                if (pattern[playhead]!==undefined){
                    self.sendMessage (pattern[playhead]);
                }
                playhead++;
                playhead%=16;
            }
        }
    }
    function addEvent (step,event){
        pattern[step]=event;
    }
}

General:

Mono-sequencer is a 16 steps sequencer that only allows programming
of  one event per  step,  and only  allows a  maximum of  16 steps  of  a
sequence.

This  module  is  used  as  testing  module  to  build  new versions  of  the
environment.  During  this  development,  the environment  has  been re-
programmed 5 times in three different languages, with different levels of
success.  The  mono-sequencer  is  the  best  test  module  to  work  with,
because it produces inputs and outputs, it has a simple functionality to
program, and it can be modified easily to become a full sequencer when
the environment is completed further.

7.5.4 Sequencer

Sequencer represents a classical style sequencer, with some additional
features for better  performability.  There are many edition tools  in the
sequencer  that  do not  target  a  specific musical  modulation,  but  offer
generic  pattern handling options,  allowing unexpected modulations by
using combinations of  these modifiers.  Not too many modulations are
possible with the sequencer, however. The broader range of modulations
are achieved by using the sequencer in different combinations with other
modules.
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The sequencer evolved from a mono-sequencer that was used to test the
first prototype of the environment, to a sequencer that can hold a wide
variety of musical expressions, although always in a quantized format.
The first  additions that were inspired by Elektron sequencers was the
look sequencing which consists on establishing an event recurrence that
is different from the sequencer length, allowing to program events that
recur  more  than  once  in  a  sequence.  Having  evolved  from a  mono-
sequencer,  the sequencer holds a  vernacular  quantized step memory.
There  was  an  immediate  realization  for  need  of  real-time  recording
capabilities,  which  is  present  on  most  sequencers.  Because  of  the
mentioned quantized memory, the mode of recording is most similar to
the Electribe’s procedure because of its similar quantization.

Inspired in some of the Maschine affordances to play, the sequencer also
acquired the ability to reset position on the real time, to allow performing
with polyrhythm in an expressive way or doing jumps in the sequence in
the style of cue-point jumping. This led to an interface procedure where
tapping a sequencer button would perform the jump. The musical tracks
in Maschine are tempo-locked, meaning that there is not much liberty to
drift tracks away one from other, but it is also a very comfortable feature
for most of the time. This realization, together with the need to automate
the mentioned step-jumping, inspired the step-jumping message types in
the sequencer,  allowing to  create sequencers  that  are strictly  tempo-
synchronized (if they are being triggered periodically at the same time)
and also  sequencers  which  are  constantly  jumping off of  sync  (if  the
sequencers are triggered differently). 

• Inputs:
◦ Main:

▪ Micro step the  second number  indicates  the  amount  of
micro-step  for  each  step  of  this  clock,  the  third  number
indicates the micro-step number within the indicated micro-
steps.  When  the  third  number  % second  number  equals
zero, one sub-step is advanced.

▪ Trigger  on jumps  to  the  step  indicated  by  the  second
number and sets the sequencer to play

▪ Trigger  off stops  the  sequencer  playback  only  if  this
functionality has been activated by the user.

▪ Rate change changes the amount of sub-steps per step.
By  default  this  value  is  1,  which  makes  the  sub-steps  a
synonym  of  steps.  Different  values,  however  allow  the
sequencer  to  run  at  different  rates  (for  example  half  or
double the speed).

◦ Recording:
▪ Trigger on The event-message is added to the sequencer

in  the current  playback  position.  This  facilitates  real-time
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recording of  events  from modules  such as  harmonizer  or
preset-kit. 

Based  by  Maschine’s  handling  of  patterns  in  a  sound,  or  similarly
Ableton’s handling of clips in a track, a sequencer should be able to hold
multiple sequences that can be exchanged. This allow an additional axis
of expression where a sequence can evolve in many ways and still be
able  to  get  back  to  the  initial  point.  There  has  been  a  history  of
speculation about this feature that goes all the way back to the initial
idea of this project, even after there was an idea of making a modular
environment. The first idea, was to have a generative function that alters
any existing sequence to any extent. This would allow to generate many
variations of a user-defined sequence by turning a knob, according to a
function that guarantees consistency, thus allowing to turn the pattern
back to the original state. The second idea consisted in having a multi-
clip sequencer, which derived into the creation of the multitape module
and has not attained yet a satisfactory state.

Current  ideas  for  this  feature  comprehend  the  implementation  of  a
pattern  history,  similar  to  the  undo history  of  user-friendly  computer
software, or the selection of looping points, which could be shifted freely
to reveal different sections of a longer pattern. Although the undo history
based pattern-variation procedure seems like the most user friendly and
attractive, it poses some questions that are hard to answer; for instance,
if a user goes back to undo history and makes a change, what happens
with  all  the  redo-able states?  Would  the  history  discard  the  original
pattern of that undo stage, or would it include a new state in the  redo
stack?  Would  the  history  become  more  like  a  tree,  whose  different
branches could be explored? In such case, what kind of user interface
would prevent the user from getting lost? If linear, the ability to go back
in history would become like an array of versions each of which can be
customized; but in that case, what defines the limit between one version
and  another?  Would,  for  instance  each  newly  introduced  or  removed
event create a new version, or the user would need to establish by hand
the  division  between  versions?  All  these  questions  are  very  open  to
different answers, and due to time availability an optimal solution has not
yet been decided.

7.5.5 Narp

Narp is a stripped version of an arpeggiator. The button matrix is used to
activate  or  deactivate  different  events.  The  event  on  each  button
consists on a trigger on message, with a second number defined as the
button number plus a base displacement. The narp allows events with
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numbers only in a range of 16, and only does the operation in order from
the lowest to the highest active number. If events are received with a
higher number,  a remainder operation takes place (% 16)  to  set  that
number within range. The idea behind such a limited module, is to foster
free and safe exploration. This module is very suitable to produce ever-
drifting  polyrhythms,  since  the  length  of  an  arpeggiated  sequence
depends on the amount  of  notes  included in  the arpeggio cycle.  The
other advantage of the narp, is that it restricts the output events into one
event.  This can be useful  to produce an accompanying arpeggio to a
melody, using a different MIDI channel in the output.

• Inputs:
◦ Main:

▪ Micro step:  the second number indicates the amount of
micro-step  for  each  step  of  this  clock,  the  third  number
indicates the micro-step number within the indicated micro-
steps.  When  the  third  number  % second  number  equals
zero, one sub-step is advanced.

▪ Trigger on: activates the arpeggiator note indicated by the
number[1]%16 operation.

▪ Trigger  off:  deactivates  the  arpeggiator  step  which  was
activated by the note on that possessed similar values.

◦ Recording:
▪ Trigger on Narp records the notes that are activated and

deactivated  as  trigger  on and  trigger  off events.  It  is
intended to record the changes on the sub-step to step ratio
as  well,  although  this  feature  has  not  yet  been
programmed.

7.5.6 Arpeggiator

An arpeggiator is a typical building block in music, and perhaps it is the
one that most strongly suggested the need for a modular environment
that treats event-messages as signals to be processed through effects.
Different  from the  narp,  an  Arpeggiator  stores  the  incoming  notes  in
order, and plays them alternatively on each step according to this order.
Different  arpeggio  patterns  can  be  achieved  if  its  clock  source  is
sequenced by an external sequencer. Unlike the narp, the arpeggiator
can hold  an arpeggio  of  notes  in  any range and with  many different
properties, in an order that is not necessary incremental.

The  Arpeggiator  can  be  used  either  as  an  effect  that  interrupts  and
modifies the stream of event-messages, or as a module that can receive
the notes as recording notes, feeding them back to the module that is
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originating  them.  This  allows  an  easier  mode  of  use,  because  while
performing a pattern on a module, the user can activate or deactivate
the arpeggiator without having to change the connections but just by
enabling or disabling the recording.

One feature which may be implemented is the addition of any incoming
note regardless of the header to the memory. The only exception in this
case, would be timing messages received in the main input.

• Inputs:
◦ Main:

▪ Trigger on the event is added to the arpeggiating memory
▪ Trigger off the events whose second and third number are

the same, is removed from the memory.
▪ Micro step a  micro  step is  advanced.  This  leads  to  the

advancement  of  steps  according  the  step  ration user
setting. When a steps advance, one consecutive event from
the memory is played.

◦ Recording:
▪ Trigger  on Recording  events  in  the  Virtual-Modular

environment,  have  the  same  effect  as  normal  events,
allowing different patch routes.

7.5.7 Game of life

Game  of  life  was  the  first  module  made  to  consider  ideas  of  more
experimental  modules,  allowing  a  broader  area  of  musical
experimentation based on unexpected behaviour. This idea is obviously
borrowed  from  the  more  generative  Euro-rack  modules  such  as
Makenoise’s  Maths or Music Thing Modular’s  Touring Machine, and was
closely based on Reaktor’s  Newscool  patch.  This  module  uses  the 16
buttons  matrix  as  a  grid  to  run  Conway’s  game  of  life algorithm
(Jiameson 2016).25 The grid was modified in order to “wrap around” the
effect of the algorithm, meaning that the first row of cells are affected by
the last and vice versa, and the last column of cells are affected by the
first column and vice versa.

• Inputs:
◦ Main:

▪ Micro step the  second number  indicates  the  amount  of
micro-step  for  each  step  of  this  clock,  the  third  number
indicates the micro-step number within the indicated micro-

25At each step of this module, each cell that is “living”, will produce a [trigger
on] event whose second number equals the grid button number plus a global
displace value (Jiameson 2016).
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steps.  When  the  third  number  % second  number  equals
zero, one sub-step is advanced.

▪ Trigger on activates the arpeggiator note indicated by the
remainder of the second number when divided by 16

▪ Trigger off deactivates the arpeggiator note indicated in
the same way as the trigger on.

▪ Rate change sets the amount of sub-steps that must be
counted to advance one step

▪ Rate change 2 how many sub-steps a note should be held
on once it is triggered by the arpeggiator. This allows for
fractions of a sub-step.

◦ Recording
▪ Trigger on The mechanic of note-off and note on in the

game of life is the same as in a narp; taking the same effect
as if it was received through the main input.

▪ Trigger off

7.5.8 Clock based delay

The  delay  stores  any  input  event  in  a  memory  except  for  the  clock
events, and propagates them to the output once the user-specified delay
time is reached. The time is counted in accordance with the received
clock events. It is possible to build a feedback mechanism to the delay
using  operators.  However,  this  was  integrated  into  the  delay  module
itself in order to simplify this common procedure. The use of constructed
feedback remains interesting because it  allows chaining effects  which
could produce unusual results.

• Inputs:
◦ Main:  any  incoming  event  except  for  clock  and  rate  change

events are stored in a memory.
▪ Micro step the micro step is advanced, which can result in

the  triggering  of  events  which  are  stored  on  memory,
depending on the delay time user setting.  All  the events
which are propagated to the output are removed from the
memory.

▪ Rate change changes the delay time setting.

7.5.9 Route-sequencer

The route-sequencer  forwards all  the incoming events,  except for  the
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clock events, into one of its outputs. The output to which the events are
forwarded  are  determined  by  a  step  sequencer.  The  step  sequencer
advances in position in relation to the received clock. The rate of this
sequence is determined by the clock ratio specified by the user.

7.5.10 Chord generator

The  chord  generator  module  produces  a  simple  transformation
exclusively to trigger on events. Each received trigger event is treated as
a note,  and many replicas  of  the  initial  note  may be generated with
different values on the number 1. The amount of times to replicate the
event and the value of each replica relative26 to the input event.  The
relative value of each replica is determined by the user through a simple
matrix interface. The interface represents a  pivot note as a red square.
The active state of  each square in the matrix  is  toggled by pressing.
Active matrix buttons account for one copy of the original event, whose
relative value is represented by its distance from the representation of
the root. The distance is not measured spatially, but sequentially in a
way similar to the occidental flow of text; meaning that an active square
immediately below the root is not at distance 1, but at distance -4. The
different copies of the root event, henceforth can be defined by the user
as copies below or as copies above the original note.

7.5.11 Operator

Operator is the implementation of one of the basic elements discovered
at the end of the  buildification process described earlier as its function
was often speculated would be useful. An operator simply changes an
input event-message by applying a mathematical operation to each one
of the message’s numbers; hence its user interface consists on a set of
pairs of operations and numbers.

[in] ?! [op] notch filter: every event-messages whose [n] number equals to the
operation number is discarded
[in] ? [op] band filter: every event-message whose [n] number differs to the
operation number is discarded
[in] > [op] high pass filter: every event-message is discarded, except if their
[n] number is higher than the operation number.
[in] < [op] low pass filter: every event-message is discarded, except if their
[n] number is lower than the operation number.
[in] = [op] set (or assign): every event-message's [n] number is set to the
operation number

26meaning  that  the  output  value  is  equal  to  the  input  value  plus  the
corresponding number.
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[in] + [op] add
[in] - [op] subtraction
[in] / [op] division
[in] % [op] remainder

• Inputs:
◦ Main: for each number of the received event, the corresponding

operation is performed and fed to the output.
◦ Recording  An  operator  can  receive  recording  messages.  The

recorded message replaces the operation numbers correlatively.

7.5.12 IO MIDI

In the context of the Virtual-Modular environment, this was the module
used to output the results of the environment into another environment
which could sonify the events (e.g., Pure-Data, Super Collider, Maschine).
This  module  transforms  the  incoming  event-messages  into  MIDI  by
applying the operation specified in Fig. 43.

7.5.13 Clock generator

A Clock generator module generates a stream of micro-steps. These are
used  by  some  modules  to  determine  the  playback  of  sequences,
arpeggios, or any other time related features. This module does not take
any input. It could be stipulated that an input could determine the clock
speed in a future implementation. In the current virtual environment it is
technically  problematic  to  automate  a  clock  change.  This  is  because
javascript  does  not  offer  a  built-in  framework  for  real  time  interval
functions, and a more complex algorithm27 was built to keep the relation
between javascript intervals and the real-time ones. This leads to tempo
changes to take effect gradually instead of instantly.

7.5.14 Bouncer

Another module in the family  of  basic modules is  the bouncer,  which
casts all the incoming messages as recording messages into the output
modules. Implemented as a hardware, the bouncer would not exist since
any  module  could  be  connected  to  the  recording  input  of  any  other
module. It was inspired by many different hardwares such as Kaoss Pad
or Maschine in their capacity to re-sample their own outputs, allowing

27the mentioned algorithm measures the difference between the clock events
to the time they were supposed to happen in relation to the real-time clock,
and times the next iteration with compensation to this difference.
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feedback in the process of modifying an ongoing pattern.
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