
1

Title: Modular composition environment: A tool for
improvisation of conventional electronic music.

Author: Joaquín Aldunate Infante

Thesis advisor: Koray Tahiroğlu

Thesis supervisors: Teemu Leinonen, Markku Reunanen

Submission: October 2018, Espoo, Finland

Program: Masters in New Media Design and Production, Aalto
University

Last revision: 2020-a

2

1 Table
of contents
1 Table of contents 2

2 Abstract 6

3 Introduction 8

3.1 Motivation 9

3.2 Theoretical framework 9

3.2.1 Affordance 9

3.2.2 Linear and divergent thinking in music 10

3.2.3 Different cultures around live electronic music 13

3.2.4 Differentiation between experimental and conventional music
16

3.2.5 The concept of music solo act in electronic music 17

3.3 Musical devices and their performance paradigms. 18

3.3.1 Gestural-mapping based tools 20

3.3.2 Sample based performance tools 22

3.3.3 DAW-control based tools 23

3.3.4 Modular performance tools 27

3.3.5 Live-coding performance tools 29

3.3.6 Conclusion 30

3.4 Thesis statement 31

4 Development & production 32

4.1 Outline of the design process 33

3

4.2 Definition of the design concept 33

4.2.1 The three domains: environment, system and music 34

4.2.2 Event-messages as a communication medium 38

4.3 Fundamental level explorations 40

4.3.1 Composite elements environments 41

4.3.2 Finding the primary elements of the environment 47

4.4 Development of Calculeitor 56

4.4.1 Networks 60

4.5 Exploratory iteration in the Virtual-Modular environment 72

4.6 Environment futures 78

5 Evaluation & discussion 90

5.1 Experiences performing with Virtual-Modular 91

5.1.1 Fukuoka-shi, Japan 91

5.1.2 Ääniaalto, Helsinki, Finland 91

5.1.3 Calculeitor party 93

5.1.4 Kaiku Pheromondo 94

5.2 Systems exploration 94

5.2.1 Introducing a drum kit 95

5.2.2 Polymeter 95

5.2.3 Held note 96

5.2.4 Skip-jump sequencer 96

5.2.5 Patternized arpeggiator 97

5.2.6 Toggling note 98

5.2.7 Progressive melody 98

5.2.8 Sequenced pattern routings 100

5.2.9 Feedback loop 100

5.3 Comparative assessment 101

4

5.3.1 Fluidity 101

5.3.2 Flexibility 103

5.3.3 Originality 105

6 Conclusion 108

7 Appendix 114

7.1 Usage tutorial: Calculeitor interface introduction 115

7.1.1 Button Names 115

7.1.2 General button functions in a module 115

7.1.3 Super-interactor 117

7.1.3.1 entering and leaving a module 117

7.1.3.2 connecting and disconnecting modules 119

7.1.3.3 deleting modules 120

7.1.3.4 creating modules 121

7.2 Usage tutorial: Your first performance 123

7.3 Usage manual: event configurator 128

7.3.1 Pre-configured events 128

7.3.2 About events 128

7.4 Usage manual: Sequencer 129

7.4.1 Recording 129

7.4.2 Creating and removing events 129

7.4.3 Choosing the event / layer 129

7.4.4 Changing the length 130

7.4.4.1 Traditional length adjustment 130

7.4.4.2 Folding 130

7.4.4.3 non-destructive folding 130

7.4.4.4 destructive folding (folding!) 131

7.4.5 Paging 131

5

7.4.5.1 Page buttons 131

7.4.6 Shifting the sequence 131

7.4.6.1 Compensated shift 131

7.4.6.2 play-head shift 132

7.4.7 Sequencer rate 132

7.5 Description of various modules in the Virtual-Modular environment
133

7.5.1 Preset-kit 133

7.5.2 Harmonizer 134

7.5.3 Mono-sequencer 136

7.5.4 Sequencer 137

7.5.5 Narp 139

7.5.6 Arpeggiator 139

7.5.7 Game of life 140

7.5.8 Clock based delay 141

7.5.9 Route-sequencer 141

7.5.10 Chord generator 141

7.5.11 Operator 142

7.5.12 IO MIDI 142

7.5.13 Clock generator 142

7.5.14 Bouncer 143

8 Bibliography & references 144

6

2 Abstract
Keywords: Electronic music, Live, improvisation,
product design, affordance, divergence,
divergency, sequencer, nime, controller, modular,
environment, music composition, hardware, new
media.

7

This production thesis sets out to create a tool for live improvisation of
music that allows musicians to create and modulate musical patterns in
real-time and reduces the need for pre-recorded or pre-sequenced
material. It starts by defining the scope of conventional electronic music
and then explores the shortcomings of current tools in relation to the
divergency of music making.

The project is based on the author’s previous experiences in the live
improvisation of conventional electronic music, and thus it starts by
surveying the currently existing tools. After that, it focuses on the
iterative design process of modular environment, taking the modular
synthesizer as a conceptual starting point. These processes led to the
development of composition devices which are expressed through a
hardware user interface, in a modular environment.

This project finds that the shortcomings in divergency of current music
improvisation tools come from the fact that musical modulations in an
improvisation tool are inherently limited by the available procedures of
any given system. While composition tools such as modular synthesizers
lack this limitation they do not have the discrete musical abstractions
required for conventional electronic music. The production project thus
focuses on the design of a modular environment that could permit re-
purposing of procedures that process discrete musical events. The
outcome of this project is a new performance environment that can be
used to generate more diverse improvisations of conventional electronic
music.

8

3 Introduction
In this chapter, the whole context of the project is
explained, starting from the personal motivation of
the author. After this, a theoretical framework is
established: the basic concepts are explained, so
that it is possible to establish the intended
meanings of the words being used during the
project. This leads to many distinctions that help
focus better the scope of this project into a very
specific domain. After this, the current state of the
art is analysed by showing an overall map of
current ways that electronic music is performed
live, leading to the discovery of the gap which this
project intends to solve or explore. The introduction
chapter ends with the statement of this gap, and
how it can be interpreted in terms as stated in the
theoretical framework.

9

3.1 Motivation
For some years, I have been developing the ability to stage live
performances of electronic dance music using various tools. These tools
have served well; however, a feeling of being limited by the tool has
always been more notorious than my own impression of being able to do
something new with it. I would buy a tool expecting that it would help me
do something in my live performances, but there was always the same
problem. This forced to adapt my performances to the ways the tools
worked, while I was expecting it to be the opposite. Using performance
tools was disenchanting. (I have to admit, however, these imposed ways
of playing also taught me most of what I know about performing live.) At
the beginning, I set out to create a music-making tool of my own that I
could use in my live performances and to customize its behaviour in such
a way that I could perform improvised musical modulations that would be
otherwise impossible. The thesis work took me onto a slightly different,
more interesting path.

3.2 Theoretical framework
It is important to establish what it is being said when using certain words.
In highly-specific subjects such as this, it may happen that a reader
comes with different definitions of certain concepts. In order to be able to
use these words, we need first to establish which of all the possible
meanings of that word is going to be used in this thesis. In addition to
this, it is important to delimit an area of work when speaking, for
example, about electronic music. This is why in this theoretical
framework some remarks are added in order to distinguish a specific
domain of electronic music performances among the vast area which
such concept encompasses.

3.2.1 Affordance

In order to initiate a discussion about possibilities of musical devices, it is
necessary to introduce the widely known concept of affordance. This
concept is credited to Gibson, and it characterizes the relation between
an organism and its environment (You and Chen 2007). In the words of
Gibson, “[t]he affordances of the environment are what it offers the

10

animal, what it provides or furnishes, either for good or ill.” (Gibson 1979,
127) From the perspective of design, each object may or may not afford
different uses or relations to a user1. Although the affordance of, say, a
chair includes sitting on it for a human, this relationship may extend
beyond the initial design intention of the object, such as standing over or
throwing it.

The application of affordance to the design of complex instrumentation
puts this term into crisis, because according to You & Chen, affordance is
limited to what can be perceived without effort (You and Chen 2007, 25).
This delimitation derives from Gibson’s later expansion in relation to
perceptual processes. In these terms, the concept is useful for the design
of physical products because it provides a clear way to evaluate how
easy it is to understand a product. Within the topic of development of
musical instrumentation, however, it will be necessary to ignore the
latter distinction. This is because, although the affordance of most
instruments is clear2, using the instruments musically do require further
mental effort than what is directly perceived. Let us take a Kaoss Pad as
an example: once it is turned on, all the interaction possibilities are clear.
The touch-pad displays moving lights which intuitively suggests touching,
the encoder also indicates that it can be rotated. The buttons are also
clearly push-able. How to use this tool musically, however, needs further
reflection: a musician needs to know what to plug into the unit’s input
and output terminals. The user also needs to be aware of the desired
BPM at which to run the unit. In order to use the unit effectively for its
function, it is necessary to go beyond what the affordance shows. In a
broader sense of the concept, however, it supports interesting views to
analyse a device in relation to higher-level actions such as composing or
looping. The term affordance, therefore, will not be relegated to what is
intuitive, but will also include what an object facilitates regardless of how
much it needs reflection or knowledge.

3.2.2 Linear and divergent thinking in music

Divergent

1 note that Gibson’s notion of affordance focuses on the relationship between
any animal with its environment. Within a design process, the animal to be
considered is most likely to be a human, and the most likely factor of the
environment is the object in question.

2 some examples: buttons are clearly push-able, decks are clearly spin-able.

11

a: moving or extending in different directions from a common point
(“Merriam-Webster Dictionary, Definition of Divergent” 2018)

In the field of psychology, divergent thinking is associated with creativity
in many studies. These works help build a richer idea of creativity. The
idea of divergent thinking can be credited to Guilford (Runco 2011, 400).
His intention was to highlight the relevance of creativity as an exertion of
intelligence (Guilford 1970). Among many other types of creativity, he
identified creative activities whose intended outcome is largest possible
quantity of solutions as “divergent production” (Guilford 1970, 159).
Guilford’s work appears as the main guiding principle for a concrete
definition of divergent thinking in Runco’s entry in the encyclopedia of
creativity (Runco 2011).

Guilford formed three indicators for divergent creativity: fluency,
originality and flexibility. Fluency represents the number of ideas
provided by the test subject. Originality represents the infrequency of
such ideas in comparison to the other test subjects, and flexibility
represents the conceptual difference among the ideas given by the same
subject (Runco 2011, 401). For easier reference, Fig. 1 provides a
graphical representation of these variables, being added one by one.
Fluency appears in the figure as the number of ideas, not needing these
to be varied. Flexibility appears as a varied and flexible group of not
necessarily original ideas. Finally, originality appears in Fig. 1
representing the application of the three factors. Note that the figure is
only for reference and not an accurate depiction of the three variables:
originality can only be assessed across different test subjects. If the
intention is to create a tool that allows a more divergent musical
expression, these three key aspects of divergent thinking form a valuable
design focus.

12

Figure 1: Representations of flexibility, fluency and originality

The fluency, originality and flexibility definition for divergence is easily
transposed to the domain of music making. The Brocs thesis work sought
an idea of divergence in terms of musical outcome from a less informed
perspective (Aldunate Infante 2013b), yet bringing an interesting idea to
this discussion. As exemplified in Fig. 2, listening appears as the least
musically divergent activity, since the musical outcome cannot be altered
beyond subjective perception (e.g., focusing on an instrument, liking or
disliking). Composition, in comparison, is a more divergent activity, since
it consists on creating new musical pieces that did not previously exist
(Aldunate Infante 2013b). Any musical activity could be theoretically
assigned to a range along this divergence axis, leading to the idea that
each musical practice possess an inherent level of potential for
divergence. In other words, each musical activity or musical instrument
affords different levels of divergence. This affordance, or divergence-
potential which is inherent in an activity hereafter will be termed as
divergency. The distinction being made, is between a divergence that is
the responsibility of the performer of the activity, and the derived
concept of divergency which is facilitated by the activity being
performed. The first notion, being based on the subject, is a study
subject of psychology. The focus on divergency, however, is a subject of
design. This project will focus on this divergency, as the interest is not to
improve personal improvisation skills, but to produce a product which
affords divergent improvisation.

13

Figure 2: Linear-divergent spectrum of musical activities, translated from
Aldunate Infante (2013b)

Non-divergent activities are different when considering the domain of
psychology versus the domain of musical activities, or music making
tools. In psychology, there are many other intelligence activities which
are not classified as divergent, according to Guilford (1970). The interest
of this project, however lies exclusively in the divergent production rather
than other activities such as convergent production or memorization. In
the terms that were defined above, divergency is defined as a single axis
variable that ranges from a narrow to a wide range of possible outcomes.
For term divergency, linearity will be used as the opposite term, to
express that activities of less divergency have a narrower scope of
possible outcomes.

This thesis will be focusing in the ability to be divergent specifically in
live performances and/or live improvisations. The divergency of a musical
tool really is a variable of potential divergence, since once a musical
piece takes place in a performance, all the other possible musical pieces
do not. Divergency, the potential for divergence, therefore, consists on
the created piece plus how many other pieces of music are not being
created, but are possible. Non-realtime musical activities, such as
composing, have a vast divergency. This is because the composer has
the opportunity to invest a time that is longer than duration of the piece,
whereas a live performer only has the duration of the piece as the
available time to produce it. Whereas a composer of pieces has the
possibility to go back in time to alter the piece in any way, a live
performer can only alter the present, and with certain tools, the future of
the piece. For these reasons, there is little use in the design of tools for

14

composition, but there is a need to design tools for live performance or
improvisation when it comes to the divergence of the musical expression.

3.2.3 Different cultures around live electronic music

Divergency is not a desirable value in every context. For instance, a non-
divergent practice such as singing known songs, or learning to play
composed pieces are highly valued activities. Music as a collective
experience can be enjoyed in a cover band concert or a dance party
where pre-recorded music is played with minimum alteration. Uniqueness
and live-ness3, however, is appreciated in some electronic-music related
social contexts, as it will be discussed in the following section. All this
amounts to determining a social scope where a tool for divergent music
making is valued but currently limited.

Togetherness is a concept that is tightly related to the subcultures of
electronic music, around which there is an on-going discussion.
Sociologically, this concept is also termed as “solidarity” (Kavanaugh and
Anderson 2008). The term describes how, at electronic music parties, all
the participants feel like being an integral part of the group of people and
flow of the party, participating in solidarity. The discussion is about
whether this feeling of togetherness in dance music is a product of the
underground history of electronic music (Straw 1993), an effect of the
inherent characteristics of clubbing and the music (Reynolds 1999; Butler
2006, 72), or an effect of the use of drugs (Kavanaugh and Anderson
2008). Anthropologists like Kavanaugh and Anderson propose other
sources for the social bond: among other reasons, there is collective
dancing, staying up late at night in groups, and collaborating in the
organization of events (Kavanaugh and Anderson 2008, 191). Arguably
this phenomenon is caused by the combination of all these elements.
The fact however, where all the authors seem to agree, is the existence
of this collective aspect in the experience of electronic music parties.
This collective aspect is relevant to the discussed topic, as it will be
discussed hereafter.

To the reader, it might appear that the formal characteristics of electronic
music have little to do with the emergence of solidarity. Electronic music,
nonetheless, does have inherent characteristics that foster audience-
performer interaction or solidarity. James Andean & Alejandro Olarte in
Sound, Music and Motion work, assert that musical predictability and
danceability are related (Andean and Olarte 2012, 2). This idea is easy to
accept, since predictability is not exclusive to electronic music, and many
other danceable music styles across history possess some recurrent

3 The quality of music being produced live, in the stage.

15

patterns (e.g., Foxtrots, Cumbia, Waltz, Salsa). This gives a reason why
collective parties have always taken place around repetitive music of
predictable patterns: predictability permits the dancing participants to
know with certainty what are the upcoming musical events. Some styles
exhibit a more complex set of rules that requires study on behalf of the
performers (e.g. Flamenco), but which again, are aimed to make the
future musical events predictable. Apart from allowing dancers to
synchronize their movements with the music, it also enables coordination
among dancers, facilitating synchronicity among the participants. This
synchronicity between audience and musician integrates the audience
into the musical process, leading to the idea of participating all together
in a collective event. In relation to laptop and IDM performers, Emmerson
(2007) states that listeners can also become an integral part of the
pieces themselves, which in many cases are intended to be a ‘symbiotic’
(Emmerson 2007) composition of the performer with the audience.

Another inherent characteristic of electronic music that encourages a
sense of participation is the intertextuality and collective production.
Electronic music is created from borrowed material, which implies a rich
intertwining of content, often expressed as intertextuality. Although
intertextuality is very common in western classical music (Vasquez
2016), “[t]he use of the sampler has made this intertextuality more
apparent, since a song can be created from the sequencing of snippets of
sound as well as from recognizable fragments from other records.”
(Rietveld 1995, 2) This intertextuality is a natural consequence of the use
of recorded material as an instrument. The practice started with tape
reels by concrete musicians (Warner 2017, 17–55), notably Mauricio
Kagel’s Ludwig Van which could be considered as the first remix ever
practised (Vasquez 2016, 17). These derived into practices such as
deejaying and sampling (Warner 2017, 89–169) in some cases still
recurring to tape-related techniques (Kirn 2011, 38, 46). Many cases of
current NIME research also search for augmented collaboration features.
Two examples of this are the PESI Extended System (Tahiroğlu, Correia,
and Espada 2013; Parkinson and Tahiroğlu 2013) and Reactable
(Kaltenbrunner et al. 2006). It is very clear, thus, that the concept of
collaboration is present at the roots of electronic music.

In addition to sampling, as Will Lynch explains; “it’s normal for artists to
pay other artists to execute their ideas in the studio, then downplay their
involvement later on, sometimes not crediting them at all. As a result,
many artists get credit for more work than they’ve done, or are even
capable of doing. The average listener is none the wiser.” (Lynch 2017)
This underlines that music production can be a participatory practice.
The role of the author in this context can be anywhere between a
composer and a mere connector of other actors. This further proves that
electronic music creation is a collective process, which further

16

emphasizes the notion of the genre’s association with solidarity.

Dancing at parties of electronic music can either be characterized as
collective and participatory or as individual. If we compare a disco party
to one of electronic music, it will be noted that instead of finding dancing
couples, people are found dancing on their own (Butler 2006, 36), facing
the deejay or performer. This can either be read as each participant
having an individual experience with the music or, to the contrary, as
every participant taking part in a collective experience. Malbon,
highlighting the social role of music parties, suggests that an audience
which knows how to listen is an essential part of any music performance.
The absence of such audience, according to Malbon, renders the
performance “useless.” (Malbon 2002, 82) Hilegonda Rietveld, as cited
by Butler (2006), underlines this further: “[i]t is only when played to and
interacted with a dancing crowd, that house music, as a medium, is
complete.” (Butler 2006, 13) Additionally, many guides for deejaying,
when not focusing in the technical part, will explain that a good deejay
will select its tracks according to the present audience (Walsh 2018). All
these assertions suggest that the experience of dancing in an electronic
music party is more a collective experience than a multiplicity of isolated
experiences.

Additionally, the scarce use of lyrics, has caused the discourse of the
genre to be undefined, thus lending itself to a heterogeneous group of
people.

The crowd is unusually diverse as well. Teenagers from downtown
Detroit mingle with suburban kids from across the Midwest. A
young raver in a wheelchair, her arms covered from wrist to
shoulder with plastic beads, spins about near a group of gay men. A
middle-aged African-American woman in a jogging suit listens
intently to the music, her eyes closed, while a tour group from
Amsterdam takes in the scene. People of all stripes, from all walks
of life, have come here to hear this music, yet they respond as a
group. The beat can not only be heard, it can be seen in their
movements, and felt in their bodies. (Butler 2006)

A hip-hop song, with lyrics, must sing about something, and will portray a
political or moral stand, which an audience may sympathize with or
disdain. The case is the same with with pop-stars, whose aesthetics build
a very strong image of a particular social ethnology. Electronic music,
however, seems to offer a broader field for different sets of personal
values.

One exception for this openness which needs highlighting, is a certain

17

level of male sexism in the sub-culture. This can be seen in way that the
role of female deejays is depicted as special or non-normal (Rietveld
2013, 8) and in the fetishized representations of women that are
portrayed in the scarce times there are lyrics present. In addition to this,
as Denise Dalphond explains in an interview that was documented by
Peter Kirn, electronic music record stores are very male-centred and
discourage the interest of women (Kirn 2011, 43). The same is the case
when it comes to the role of women’s musical interest in general: “In my
experience, men either assume you don’t[sic] know anything, or think
that your interest in music is hot and turn it into a sexual thing” (Kirn
2011, 43).

The term EDM is a contraction of electronic dance music and is often
used to include this whole genre, one example being “unlocking the
groove” (Butler 2006). Under the term EDM, there are different notions of
live performance which, for the purpose of this project, need to be
distinguished. In a context such as deejaying, where the performance
material are pre-recorded music tracks, the predominance of the author
inverse to the one of the performer. According to Straw (1993), in the mid
1970s deejays started concealing the identity of the tracks being played
for the party. Straw claims that the “credibility of dance music’s
professional culture have been built upon an investment in secrecy”
(Straw 1993). The credibility of the deejay is related to the non-disclosure
of the tracks. This intention to conceal might not appear as evident. In
some cases the intention of a performance is not the concealment of the
tracks, on the contrary, intentionally letting the audience recognize what
is being played. In the case of the deejay this idea would seem to make
the author role less prominent. In the case of live electronic music shows,
or deejays who play productions of their own, authorship remains
prominent regardless of how recognizable the (instantiation of the) tracks
are. Whichever the case, be deejays who conceal their track listing or live
musicians which play their own compositions, authorship is a desired
feature of live shows.

Different accounts of electronic music history disagree about the value of
a musical piece being recognizable. Whereas in some accounts, such as
Peter Kirn’s (2011), the popularity of a certain musical piece is part of a
positive feedback loop in popularity. In contrast, the appreciation for
white labels seem to prove the opposite true (Hesmondhalgh 1998;
Straw 1993). Some EDM cultures seem to appreciate the familiarity of
the track, and expect deejay sets which are composed mostly of known
recordings. Some other sub-cultures, by contrast, expect the
performance to be familiar in only style, but value its uniqueness.

This difference is relevant when it comes to whether a musical
performance intends to be divergent or not. Where some live shows tend

18

towards a recognizable reproduction of the pieces (since the value is
popularity), other performances seek to be unique and unrepeatable
(because the value is uniqueness). This thesis, therefore, is focused
mostly on performances which seek uniqueness: this is where the idea of
improvisation makes the most sense. It is also possible that
performances of recognizable pieces may benefit from a platform for
improvisation to attain previously unseen versions over those pieces. In
both cases, the author as well as the performer emerge as prominent
figures in the performance.

3.2.4 Differentiation between experimental and conventional music

In a widely known comedic episode, Karlheinz Stockhausen listened and
criticized some tracks of more popular electronic musicians such as
Aphex Twin. According to this story, Stockhausen wrote about Aphex
Twin’s compositions:

“I think it would be very helpful if he listens to my work Song of the
Youth, which is electronic music, and a young boy’s voice singing
with himself. Because he would then immediately stop with all
these post-African repetitions, and he would look for changing
tempi and changing rhythms, and he would not allow to repeat any
rhythm if it were [not] varied to some extent and if it did not have a
direction in its sequence of variations” (Witts and Stockhausen
1995, 32)

This story demarks a clear difference between the worlds of experimental
and conventional electronic music. Conventional music tries to satisfy the
need for rhythm and the, perhaps, hedonistic lust for melodies and
harmonies composed according to a western canon. In this thesis,
conventional music is distinct from this notion of experimental music
which seeks to disrupt, or work without conventional notions of music,
such as rhythm, harmony or melody. From this point on, the term
conventional electronic music will be used as a subset of electronic
music. Where in electronic music there is space for sound performances,
the limits of conventional electronic music are demarcated by the use of
conventional musical abstractions, such as meter, rhythms, patterns,
loops, tones and scales. This delimitation somehow connects an ambit of
electronic music to the previously developed tradition of classical music,
rock, jazz, and so on.

This thesis project will focus on the more conventional styles of electronic
music. For experimental electronic music and experimental music in

19

general the tools seem to be inherently sufficient. As explained, since
experimental music does not constrain itself with conventional rules, it
allows the use of any object as musical artefact, and the object’s
affordances can represent the rules of the piece. In this sense, there is no
use in the invention of tools with enhanced divergency in experimental
music making since the selection of the tool forms part of the musical
composition process (Maraš 2011). In a case where this would not be
true, it would be necessary that the musical artefact is created by the
artist themselves, since the resulting musical piece, expectedly, would be
bound by original rules. In an experimental music process, henceforth
there would be no use for an electronic music tool, unless it is used in
ways for which it is not intended.

3.2.5 The concept of music solo act in electronic music

It is said that the appearance of the tape recording technology had an
impact of similar magnitude than the impact photography had to
painting (Warner 2017, 17). The capacity to record sounds created a
philosophical instability around sound and music, creating a whole new
field of research and exploration. As suggested by Daniel Warner, the
appearance of a practical possibility can have an impact on matters such
as the meaning of natural phenomena. When there is the ability to
record, sound events can be re-contextualized in new ways (Warner
2017, Chapter 1). Recording techniques facilitated sonic productions by
individual artists, as for example, Pierre Schaeffer. The ideas behind early
musique concrete explorations with recorded material, started gaining
acceptance by wider audiences while recording technologies infiltrated
popular music genres. The tape reels became standard music studio
equipment, normalizing the use of post-production. Consequently, music
that is composed on the basis of techniques rather than instrumental
performance started emerging organically. In the 80s, with the many
developments around digital instrumentation, it became possible to
record, alter and play sampled sounds at live stages.

While the role of a musician prior to recording technologies was crucial to
the existence of any music (because mechanical instruments do not play
themselves), after recording or rendering it is possible for music to exist
without there being a performer. Given this, a space was born for
performances using music records, giving birth to the idea of a deejay.
This use makes enables a single person to facilitate the live presence of
complete musical pieces without needing a band.

Among other techniques, a live music performance can be performed by

20

a single person thanks to looping. A loop is a musical fragment (sampled
or composed) which has a length in relation to a musical meter. For
example, a musician could be working with two loops: one which is a four
beats long bass melody, and another which is a sixteen beats long
sample of a drum pattern. A single musician can launch, stop and edit
these loops, which keep repeating. With an adequate user interface, it is
possible for a musician to perform in real-time a polyphonic piece.

These factors explain why most electronic music is played by a single live
performer, and why many tools are oriented towards allowing solo
performances. Looping alone, however, has not been enough. Looping
tools now a days also integrate with options to produce modulations to
these loops. These modulations can either take place in terms of
acoustics (e.g., signal processing effects, re-sampling) or in terms of
composition (e.g., duplicate a sequence, shift an octave, re-order a
pattern). This is particularly true with tools such as Ableton Push or
Maschine, where the machine allows multitimbral compositions; all to be
managed from a single user interface node. In this way, a variety of loops
can be produced from one source loop. The same has been true in the
case of deejaying, which is, in the vast majority of the cases, performed
individually.

3.3 Musical devices and their
performance paradigms.
Thus far, divergency was defined in such way that allows a particular
description of musical activities. This thesis has also asserted that a
music-making tool which affords divergent improvisation could be
appreciated in a certain musical ambit or social context. The last premise
that needs clarification in order to support the thesis, is related to current
tools and their divergency in live improvisation of conventional electronic
music. The following chapter explores the different ways that divergency
is attempted in live musical performances, what their limitations and
what their advantages. In other words, the process to follow defines the
state of the art in live electronic music improvisation.

In order to understand the broader context of a performance tool,
different musical instruments were surveyed to understand different
approaches toward live performance interaction. This provided both, with
an overview of performance possibilities, and with a categorization of
performance paradigms. The categorization was not performed by
assigning instruments according to formal characteristics (such as shape,

21

size, presence of buttons). That categorization, however useful for some
purposes, would not provide a notion of the variety of techniques to
perform music, but with an atomized gamut of similarities and
differences among items. Furthermore, a categorization of different ways
to perform music is likely to have unclear boundaries, (Frey, Gelhausen,
and Saake 2011) defeating the purpose of this type of categorization. A
method was used, instead which led to a categorization more similar to
prototypes or exemplars (Frey, Gelhausen, and Saake 2011) where items
need not to be perfectly matching elements of a category, but be related
in such way that reflects that there are many features in common. In this
way, rather than attaining a categorization of elements, each
performance type obtains neighbourness to others.

Each of the surveyed instruments was taken as a proxy of their intended
performative use.4 These performative uses can be found in
documentations of different performers using these tools for musical
performances. Their use can also be inferred from online documentation
and manuals. For each of the items considered, a reference was added
where it is possible to review their intended use, which can be seen in
the appendix. The relations between instruments was explored by
relating the found elements one to each other. These relationships are
established by intuition. This step is expressed by the links among
elements in Fig. 3. By following this method, the group of surveyed
techniques tend to form groups or neighbourhoods, which help discretize
the conceptual approaches toward musical performance. The bigger,
blue captions seen in Fig. 3 give name to these groups, and each
element relates to each group to different extents.

A broad scope of electronic music performance instruments was selected
to compare and make groups, but the different nature of many of them
posed some challenges. Korg products are usually unique and with a
delimited functionality, such as the Kaossillator. This makes these
products easy to place into a category. Some groups of products,
however, needed to be considered as a single item, while other single
products needed to represent a whole category of similar products. One
example is the category of deejay controllers and decks: there is a broad
variety of products, each with some differences. For this case, the CDJ5,
was taken as the main example in representation for deejay consoles in
general. The piano, although not being an electronic music instrument, it
stands as a reference point between classical instruments and the ones
being analysed, as well as a proxy for mechanical instruments.

4 e.g., a piano is intended to be used by pressing the keys albeit some
musicians could use it in other unexpected ways such as touching the strings

5 A deejay deck and controller created by the brand Pioneer.
22

Another caveat to this grouping process is the variety of different
relations between controllers and software. For instance, a performance
using an Akai APC40 is very different than one that uses an Ableton push,
despite that in both cases, Ableton is the intended host application.
Should the controller be taken as a mere access point to the host
application, both would be considered to be the same. There were
important differences between how the performance operates depending
on the controller, however, that needed to be taken into consideration.
The decision in regard to this, was to consider the controller as the
independent user interface, as if the host application would have been
integrated in it, and it was not accessible via another user interface.

As a last remark in relation to this process, it was necessary to consider
modular environments as a singular product. The most important case
that reflects this, was Euro-rack. Although Euro-rack is not a product but
a standard where different products can correlate, the system offers
many modules which do not work on their own, but as part of greater
systems, and it is also possible to find Euro-rack modules that could fit in
any group. In addition, there are self-contained modular systems such as
Reaktor or Reactable which could be used to build any other product, and
hence, fit in any group. In this case, if the different modules of the Euro-
rack environments were considered as singular items, it would make it
necessary to consider virtual modules from Reaktor or Reactable as
separate items as well. Euro-rack and other modular musical tools offer
different user interface propositions more as a system than as individual
units.

23

Figure 3: Intuitive grouping of music making tools according to how they are
performed

3.3.1 Gestural-mapping based tools

The paradigm of gestural mapping is the most intuitive approach to
design and understand electronic music instruments, since it mimics the
relations humans have with mechanical instruments, while taking
advantage of the augmented features that electronic instrumentation
offers. One of the earliest electronic examples of this is the Theremin,
where the distances between the performer’s two hands and two
antennas, would determine pitch and volume respectively. The logic
behind gestural mapping is that having a real-time sonic response from a
body action conveys the most intuitive interface for composition, which is
exactly the same as with mechanical instruments.

Three current examples of this paradigm in a controller, are the Owow
MIDI controllers (White 2018), AHNE (Niinimäki and Tahiroğlu 2012) and
Tommi Koskinen’s UFO controller (Koskinen 2015). Their main features
are simplicity and granularity, taking advantage of the “decoupling”
(Koskinen 2015) of the sound production from the action (Koskinen 2015,
9). One similarity among these two controllers, is that they offer specific

24

mappings of a gesture to a musical parameter or event, assuming that
these will be combined with other expression interfaces. A less obvious
decoupling shown in these devices is between the user interface
parameters and their association to a technical aspect of sound. The
unnamed parameter approach, opposes to the presentation of
parameters in traditional synthesizers, where gestures (most likely
knobs) are labelled with signal processing terms such as low-pass or
pulse-width. Some of these gestural mapping tools try to encourage
intuitive use by removing the names of the parameters so that the users
rely more on their audition than sound synthesis related concepts.

Most of the high-end synthesizers work under gestural paradigm, given
that their design focus is on the sound design. The parameter controls
are relegated to the commonly used panel with knobs and keys. In many
cases, it is assumed that more advanced sequencing will be provided by
a sequencer using a control input (e.g., MIDI, CV, OSC). One extreme
example of this are the Roland Boutique synthesizers, which do not
possess their own keyboards, becoming, in a sense, modular.

The use of gestures as expressive input for musical performance offers a
broad spectrum of possibilities. For multitimbral composition, however,
more than one performer is required. Self-performing devices can be
used as an aid to a single performer (e.g., sample looping, sequencing).
These types of device will be discussed hereafter. Speaking strictly of a
gesture-based performance, the number of simultaneous gesture
channels is limited by factors such as the number of limbs a person can
have, and their capacity to coordinate all of them while performing
independent voices. Although it is possible to use technology to capture
as many gestures as there are individual muscles, a human cannot
coordinate many different gestures without memorizing the musical
performance at the muscular level. One early example of this are one-
man band performances, where the performer needs to learn the musical
routines to the muscular level. The limits of divergency in solo
performances using gestural mapping tools are, hence, related to the
human motor coordination limits.

One exploration branch which combines gestural mapping tools with
code, can lead very appealing results. Musicians could produce custom
programs which handle all the details of composition and performance,
and somehow couple their body movements in meaningful ways to the
generated musical piece. In these cases, the necessary equilibrium is
noticeably delicate between the sense of control, the perception of
control, the improvisational freedom and completeness of a musical
piece. A performance which is very complete musically, and presents
many variation may convey the feeling that the musicians are really
following with their gestures what the program requires them to do,

25

instead of them controlling the flow of music, as if they were making the
mimic of playing a music which is already playing. This is because a
highly complex piece with different modalities needs to recur to timed
events, or a highly rehearsed choreography. It would also need to
produce more musical events than body events due to the human
coordination limitations. If the song presents this high complexity, but
the tools is designed not to require a trained choreography, it may
convey the feeling that the performer is a mere producer of a random
seed to a complex algorithm, because there is no obvious relation
between movement and sonic effect. On the other hand, tools that map
gestures into sounds in a very direct way, as to make this relation
obvious (e.g. air drums) tend to become similar a traditional instrument,
not leading into the production of a rich piece, thus needing the
integration of more instruments or performers. An excellent example,
however, that may have attained this delicate equilibrium is Imogen
Heap’s performance with embodied controllers. In her demonstration for
Wire (Cornish 2013) she demonstrates the relations between gestures
and musical operations. In her demonstration there are examples of live
looping, gestural performance of instruments, and live tweaking of effect
parameters (Heap 2013). From this demonstration, it appears that her
generative system can produce a wide variety of music. The
performance, however, still needs to be aligned within an intended track,
in a similar way to rehearsed instrumental music. Nevertheless, Imogen
Heap demonstrated an interesting approach to produce musical
improvisation from gestures and prepared coding, which is an interesting
research possibility that needs a long exploration process.

Within conventional music, different levels of divergency are achievable
by groups which use gestural mapping paradigm instruments. This has
been exemplified by improvisational genres such as Jazz, or even in some
western classical compositions framed within the codas, the provision of
adequate rules for improvisation makes it possible for musicians to
improvise while forming part of a group of performers. In these cases,
success depends on knowing the other musicians and also the rules
about how to perform.

The mentioned improvisational rules sometimes are provided by the style
itself, and arguably the structure of electronic music is enough as a rule
base for improvisation. For instance, full space for improvisation could be
given to a group of electronic instrumentalists, with the conditions that
each musician only perform within a musical role (e.g., drums, leads,
pads) and that they perform musical brakes in relation to squares of 4
(e.g., a small break every four measures, and a big break every 16
measures). A music improvisation duo called Skinnerbox exemplifies
electronic music improvisation in groups, resourcing to gestural mapping
techniques among other techniques, as it can be seen in the (Hilgenfeld

26

and Gabbai 2017 Skinnerbox Live 2017 video). In the case of
performances with more than one participant, divergency is provided by
a set of agreed rules, and the capacity for communication among all the
participants during the performance.

3.3.2 Sample based performance tools

Sample based performance of music and sound holds an important role
in the development of electronic music, most notably in the cases of
Musique concrète and the appearance of deejaying. These techniques
are facilitated by the ability to record and reproduce the recorded
material. When it comes to live performance, the two predominant
techniques are looping: the repetition of a sound fragment, and playback.
Both of these techniques assume additional changes to the sample such
as superimposition, re-arrangement and application of sound effects.

The most frequent example of sample based techniques is deejaying;
which lends itself for a wide range of divergency levels. It consist of the
playback of complete musical pieces or patterns, and intertwining of
these pieces by superimposition. The sounds of the tracks can be altered
by using signal processing effects, or by manually rotating the vinyl,
changing the course of playback. In this way, recordings are treated as
tracks. Live superimposition of tracks may be done in more than one
way, the most obvious being a sound mix of both. Other examples is the
subtraction and mix of different frequency ranges of each piece, or
gating, where the volume of each the two superimposed tracks is
switched repeatedly and abruptly in a musical way. This can lead to very
divergent performances, where the tracks are completely denaturalized
by re-contextualization. The techniques can also lead to very linear
performances where the tracks are presented as they are originally to
please an audience that reads tracks as social memes.

There are many examples of performances which combine acoustic and
gestural instruments with looping, as a way to produce polyphony
without additional musicians.6 For these loop based performances, tools
such as Korg Kaoss Pad, Electro-harmonix 45000’s, Boss Loopstations or
Ableton are the most recurred. A loop based performance consists on
capturing sound patterns that have been produced in the live stage, and
reproduce these sounds in constant repetition or loop. When a sound is
looping, the performer can proceed to record other sounds, which will
also be captured and looped. This method of performing can convey a
great sense of live, since the audience can spectate the gestural

6 Two examples of such performances are Beardyman (Foreman 2011) and

27

performance and henceforth understand the sources of all the sounds
which they are hearing.

The attractive aspect of sample-based live performances is related its
limitations: the musical score of a sampled sound cannot be changed
such way that remains sounding natural. For a fact, the bleeding edge of
sample-based modification is recurring to neural networks as a way to
trace back sounds to their generation algorithms, with the purpose of re-
synthesizing these sounds. Examples of this is the WaveNet (van den
Oord, Dieleman, and Zen 2016) and the Nsynth (“Nsynth Super” 2018).
But in a composition sense, these experiments are not really sampling
tools, but synthesizers that need to be played from notes, like regular
synthesizers. Musicians have preferred to harness the unnatural
character of re-compositing with samples to produce dramatic effects.
Resampling for instance, is what determined, according to (Sullivan 2013,
1–3) the birth of Dub Music. Among other examples, this can be heard
from nearly all the tracks of The Prodigy’s Experience album (Howlett,
Abram, and Nakajima 1992) in their transposed piano chords, and pitch-
shifted voices. This has been the case in many other styles. Another
example is jungle music whose aesthetic was determined by the nature
of old funk drum solos in vinyl records (Butler 2006, 78), and distorted
character of reggae lyrics. Apart from the mentioned reference to this,
the phenomenon can be clearly listened in tracks such as Super Sharp
Shooter (Pettit, Ford, and Redpath 2000) or Original Nuttah (Wahab Lafta
and Williams 2010) among many others. Sample based performance and
composition remains a technique with limits that are also their
advantage. Certainly sample based music can only offer a gamut of
variation techniques that is delimited by the technical capacities of the
loopers and their sound-altering operations.

3.3.3 DAW-control based tools

Digital Audio Workstations –abbreviated as DAW– in most cases, share
some design attributes and a workflow. Over this paradigm, each
different workstation offers some additional improvements to the
workflow, while keeping the ability to compose music through a DAW
interface. The DAW workflow consists on having different channels, each
of which can contain effects, instruments or sound chunks, often named
samples. Each channel also possess a lane in a shared timeline, where
the samples or MIDI events can be placed, as a way to compose the
piece. The most used interface for the programming of MIDI events is the
piano roll (Fig. 4). An alternative, but less intuitive interface is the one of
the trackers (Fig. 5), where the raw MIDI data is presented in a list.
Because of its wide adoption, the DAW design paradigm is also used in
the design of live performance tools.

28

Figure 4: example of a piano roll interface

Figure 5: example of a tracker interface

Some DAW composition tools are a DAW in a literal sense. For instance
Native Instruments and Ableton have developed controllers that are
designed specifically to interface with their own computer-based DAW.
This approach takes advantage of the vast computational resources
contained in computers, and combines this with a hardware interface
that makes musical interaction more fluid and live performance more
engaging.

The author of this thesis has been five years performing with Maschine.

29

One of the strong points of Maschine is the hardware quality, which
allows a very fast and expressive input of musical performance. Maschine
can be used as a musical instrument with looper capabilities. The
interface allows a fast and expressive interaction: there are 16 velocity
sensitive pads, 8 encoders for instrument parameters, and certain
functions for tweaking patterns. The software design in Maschine,
however, bounds the gamut of possible transformations of the loop to a
narrow scope: once a loop is recorded in a track, it is very hard or
impossible to access individual events and modify their properties. To
alter a loop, the easiest is to record it again from scratch, or to access it
by using the laptop’s interface. The tools for selection and modification of
events are very incipient and they do note allow a development of a
sequenced loop into a similar one. It is important to note, though, that
Maschine has more pattern editing capabilities that most sequencers.
Given that Maschine is a controller for a computer host application,
however, more transformation capabilities would be expected.

Ableton has been the de facto tool for most of the conventional electronic
music performers, regardless of how much of their performance is
prepared or played live. In the area of live performance, Ableton’s core
feature is to have many sound loopers which are tied together in timing.
In Ableton’s language, these loopers are called clips. These clips allow to
do an on-the-fly sound or MIDI recording, which will start playing as soon
as the record is stopped (“Ableton Manual: Using Push” 2018). Probably
one of the most important factors for its success is the fact that the
length of these clips adjust automatically to match the recording time,
but with a length quantization that is associated to the musical metric. In
most of the other tools, the length of the pattern need to be known
before recording. The push controller, alike other controllers for Ableton
possess a back-lit buttons grid interface. The use of button matrices with
as much as 64 buttons is perfect for use as sequencer interface (Arar and
Kapur 2013) and an isomorphic keyboard interface among other
functions.

Push, being a mere controller of a tool that has been developed for a
couple of decades, becomes a vast library of functions for the
performance. In tune with the spirit of Ableton, Push intent is to make the
most fluent interaction that is possible with the composition. Push, like
Maschine allows tweaking parameters of virtual instrument using the
hardware’s encoders, whose values and labels are represented in a
screen with correlated positioning. As Ableton push is much posterior to
the development of its host hardware, the mapping of parameters to the
interface is much more heterogeneous than most synthesizers and
controllers. In Maschine, for instance, each different virtual instrument
has well defined parameter to knob association. This results in a more
heterogeneous user interface, which affords a broader range of

30

procedures to apply.

It is not easy to track how the idea of using squares to play drums, would
become coupled to the idea of a tactile pixel. One early example of this
interface is the Linn 9000 (Linn 2018) which seems to be the step
between a computer-keyboard looking interface and a button matrix
interface because it resembles both, a Linn LM-1 (Linn 2018) and an Akai
Mpc 60 (Linn 2018; and Warner 2017, 160). This can be understood as
the link that brought the interface, but this argument stands on an easily
refutable position. It can be asserted with confidence, however, that the
button pads have become an important, multi dimensional control
surface, affording a high bandwidth of input and feedback, (using
colours, pressure, position, brightness, texts, among others) that can also
present spatial relations (e.g., horizontal time, vertical tone). In the
industry, clear examples of a trend started appearing such as Yamaha’s
Tenori-on or the Korg Kaoss Pad 2. Now a days, it seems that any live
improvisation hardware will implement this type of interactive pixel-
buttons.

Novation’s work with matrix-based composition has been very important
to the culture of live conventional electronic music instruments. Circuit
synthesizer culturally inherits from Ableton because the interface design
of circuit inherits from Novation’s Launchpad. With Launchpad, Novation
was very successful in the exploration of a user interface that relies
entirely on a back-lit button matrix, and Circuit is a later, more evolved
realization of that initial interaction concept, now as stand-alone
composition interface (“Circuit User Guide” 2017, 5).

If the power of a computer can be scaled down to the size of a cellphone,
it makes sense to create a computer-hosted DAW whose host computer is
an embedded processor. Novation Circuits are precisely this; a set of
digital sequencers with a dedicated digital sound engine and computer.
The user interface of the circuit is also matrix composition, thus having a
synthesizer with flexible composition interface similar to the one of
hosted DAW’s. Circuit family comprises Mono Station (“Circuit Mono
Station” 2018) and Circuit (“Circuit” 2018), although it is possible that
many new products appear under the same concept.

Some tools simulate the situation of a DAW, with more limited
possibilities to facilitate performance. Such is the case with the groove
boxes. These present a limited set of sounds of different varieties, each
one on a MIDI track. The design approach of the groove boxes afford the
composition of full pieces integrating drums and synthesizers or samples,

31

and are focused toward live performance of music. Most groove boxes,
such as the Electribe, have a sequencer which is very short in features
and flexibility. Playing with Electribe consists mostly on tweaking
parameters of the synthesizer voices, and by recalling prepared presents
from the library. Interestingly, it is this limitation what also brings some
insight about good performance tools: dance musicians do not
necessarily intend to improvise their performances, and a machine that
can recall presets is greatly appreciated in the context of dance music.

The use of groove boxes brings the MIDI protocol into topic. While MIDI
has the potential to integrate many synthesizers and sequencers
together to build a more complex instrument; by the ways it is
implemented in most devices, its function is often relegated to the mere
synchronization of clocks. As it can be seen in live setups such as
Octave’s (Octave One Boiler Room Moscow Live Set 2014) among other
artists, the groove boxes are used as pre-composed track sources. By
using groove boxes or synthesizers, instead of getting a more complex
system, they only get many segregated sound sources which he can only
fade in and fade out, but not generate emergent features.

Given the power that is harnessed from using personal computers as
host, it comes as a surprise that not everything is possible with personal
computer hosted instruments. In a sense, these machines recreate the
ideal situation of a studio with unlimited synthesizers, all connected to a
single composition system. After analysing all these tools, the flaw of the
DAW paradigm seems to be related to the closed nature of design. This
idea is most clear with Maschine, where the performer finds a bounded
space of what is possible. The bounds of what is possible are defined by
the design decisions of the product. This is not a problem on its own,
since every system needs a design. The problem is that the DAW
paradigm does not offer a framework where original features could
emerge naturally from its use. All the moving parts –plug-ins, samples,
patterns– of a DAW are confined to a space where they cannot transgress
its initial workflow.7 Instruments designed under the DAW paradigm offer
bounded options of divergence, and the bounds are defined their design.
In other words, they can only do the things for which there is a dedicated
procedure.

3.3.4 Modular performance tools

Reactable has been one of the most remarkable NIME’s in the last years.
It consists on virtual environment that works in a modular fashion. Apart
from the remarkable user interface, this instrument took advantage of

7 One example of this in Maschine, is not being able to add a midi effect or

32

placing the image of the virtual environment’s interface in superposition
with physical objects, whose positions were tracked back into the
environment by using machine-readable codes that they called fiducials.
This strategy effectively created an environment of augmented reality for
modular music composition (“Reactable” 2018).

Reactable propose interesting ideas about the emergence of an
environment from a computer system. This case presents a combination
of object recognition with basic projection mapping and software which
effectively affords modular composition. A similar attempt to do digitally
simulated modular composition around the same time, is Block-jam,
which considers a signal that travels through the different modules,
generating sounds and getting diverted to different paths (Newton-Dunn,
H Nakano, and Gibson 2003).

A performance device which is modular-like is Squarp Pyramid. The most
remarkable feature of this sequencer, is the non-destructive layers of
sequence tweaking that are present such as scale, and the ability to
modulate parameters of the events in the same fashion as synthesizer
parameter automation (“Squarp Pyramid 64-Track Sequencer” 2016;
“Squarp Pyramid Sequencer User Guide” 2016). This allows effectively a
more parametric approach to music composition, which implies that
many more musical modulations are possible in the domain of the
pattern, than with other sequencers.

The idea of a modular synthesis is almost an inherent part of sound
circuit design: it would be too challenging to design any functional circuit
without discrete components. They developed gradually from research
laboratories such as Hermert Eimert and Werner Meyer-Eppler’s studio
(Warner 2017, 59) where increasingly higher-level sound components
were needed, and it is generally understood that later they were brought
to massive audiences by Moog company (Warner 2017, 62; Pinch and
Trocco 1988). There have been many developments around modular
synthesis options such as the Buchla’s synthesizers, the ARP 2600 or the
E-mu systems. Now a days, perhaps the most varied and developed
environment is the Euro-rack, for which new modules and techniques are
being developed every day.

Euro-rack environment as a music improvisation platform attains many
advantages over the other systems given its openness. Euro-rack in spite
of providing a sub-set of the possibilities that circuit design provides, has
some unique cultural and technical differences that relates it with very
open creative processes. This openness is granted due to its historic
independence from a musical or sound canon: Euro-rack standard is born
almost by accident with the design of the A100 module. Paraphrasing the
author of the system, one of the ideas behind the A-100 system is to

33

allow the use of control signals to control any parameter, without limiting
this relation to specified types of signals (Doepfer 2018). According to the
I dream of wires movie, Doepfer’s Euro-rack is related to Don Buchla’s
concept of modular synthesis, which stood up for free experimentation
both, with the design of the modules, and the use of these musically
(Fantinatto 2014). The casing and power supply of the standard were
inherited from standard casings and power supplies that the designer
had in hand at the time, which is the “standard 19” rack system"(Doepfer
2018) standard for electronic cards (Groves 2016). The most distinctive
technical values of Euro-rack are voltage controlled parameters, discrete
higher-level sound circuits, a connector standard and a circuit board size
that enables a standard mounting system.

It is thinkable to consider conventional composition environments such
as Reaper or Ableton as modular. It is precisely the difference of Euro-
rack modularity against the concept of modularity on these, that make
the inherent characteristic of Euro-rack modularity to stand up. For
example, in the composition environment of Ableton, there is modularity
because many plug-ins can be used in different orders and
configurations, in ways were not specifically designed, relying in a host-
plug-in scheme. There is also the possibility of plugging different
peripherals for user input or output. In contrast, the concept of
modularity of Euro-rack consists on a standard of control voltages and an
enclosure system that allows any module to take any role, instead of
having a framework that leaves spaces where modules will perform a
specific role (such as receiving MIDI and outputting sounds).
Furthermore, the Euro-rack environment does not provide any
predesignated base such as a global clock, or master output. All of these
features are meant to be provided –or not– by the modules themselves.
For instance while in Ableton a composer is limited to one clock –a
necessary limitation for conventional music–, in Euro-rack it is easy to
have any amount of different clocks drifting away in their own paces.
“These definitions of the various signals, and the distinctions between
them –sound sources and modulation sources– are right in principle, but
a modular system like the A-100 often makes a mockery of them. In a
modular set-up, all of the modules produce voltages, and can be used as
control voltages or triggers, thus blurring the distinction between the
various types.” (Doepfer 2018) This type of modularity allows for a bigger
field of experimentation possibilities. Voltage controlled modular
systems, decidedly, present the users with the possibility of making their
own synthesizer systems instead of only presenting the possibility of
making music directly. Effectively, a music tool making environment.

In the domain of computer-hosted modular environment there are also
modular systems. Some examples of this are Reaktor and Pure-Data.
These two work with lower level abstractions, meaning that the usual

34

operations done by each module are less complex, allowing the user to
create a wider variety of systems with it, by using a greater quantity of
these modules. User-built modules, however, can be used as modules
themselves; which accounts for a usage on a higher abstraction level.
These platforms provide the same type of homogeneous modularity as
modular synthesizers: signals can be re-purposed, same as some of the
modules.

This homogeneous modularity is an ideal example of a platform that
allows divergent exploration of music, because instead of having a gamut
of possibilities (as offered by DAW-based environments), we now have a
field of possibilities. Euro-rack, and analogue-modular music hardware in
general allows for experimental music outside the boundaries of our
understanding of music, and this has been in general the place for this
environment. Clear demonstrations of this, are many modules that foster
stochastic composition, such as modules that would capture
electromagnetic noise (“Field Kit- Electro Acoustic Workstation” 2018),
modules that capture skin capacitance (“New Spikes Milk Edition” 2018),
and modules that compose random patterns (“RPG” 2018).

In this sense, some environments that claim being modular, will be
considered as non-modular in the scope of this thesis: one example of
this are the Roli Blocks (“Blocks: The Instrument That Grows with You”
2018) which despite presenting some physical characteristics of
modularity, the composition method is actually based in a DAW or looper
model. In this sense, Roli Block modules are mere extensions of one
singular access interface to a single composition scheme; in the same
way that more than one Maschine hardware can also be connected to
control one single running instance of Maschine, or more than one
keyboard can be plugged in to one same DAW.

3.3.5 Live-coding performance tools

Programming has been clearly a successful tool to create solutions in
many aspects of our lives. Every object that possess some type of
programmable data processor reflects that the object’s functionality was
better represented by computer code. The use of code is so pervasive,
that the current use of analogue usually serves to refer to what is not
digital.

The line between modular composition and live coding composition is not
clear when it comes to Virtual-Modular composition tools. Native
Instrument’s Reaktor, although being graphically a modular environment,
possess some aspects that consider computer processing details which
relate the environment to a certain extent, to programming. Additionally,

35

Pure-Data despite its resemblance to a modular environment, is often
referred to as a graphical programming language. Live programming
performances, however, are narrowed down by McLean (2014) to “where
source code is edited and interpreted in order to modify and control a
running process.” (McLean 2014, 63) and most often is associated with
text-based coding.

Live programming in concept affords a vast divergency possibilities, even
within the area of dance music. One musical trend with this intention,
according to Daniel Dylan is the algorave, “[i]n essence, the aim is to put
programming at the forefront of the club experience, to present the act
of live programming as an art form in itself.” (Dylan Wray 2013)
Algoraver’s musical material that is presented as examples in this article
features synthesis, sampling and looping techniques.

Live coding for dance music is an interesting proposition, “but to date
algorave hasn’t[sic] managed to pair the bedroom isolation of coding
with the empathy and euphoria of communal club culture” (Dylan Wray
2013) there is still a gap between coded music and clubbing events,
which perhaps can be filled with less idealistic programming abstractions
to be used in the live context that would allow the creation of those
euphoric music patterns. Apart from these, live programming is likely to
bring interesting new patterns to conventional electronic music genres.

3.3.6 Conclusion

Having produced different discrete categories of tools for musical
performance, it was possible to analyse the different ways these could be
used to produce divergent live performances. Although each individual
product within a category may offer different options for divergency, it
was observed that each performance has a defined area of divergency.
Coming back to Fig. 2, it is realized that there is not a single axis for
divergency. One example of this is the listening of music. In this graphic,
listening is not represented as a dot at the left of the spectrum, but as a
small range, since, it was assumed that it was possible for listeners to
alter their own experience of the musical piece by, for example, focusing
the attention on an instrument, or trying to reverse the order of strong
and weak beats. This divergency, however, is not achieved in a same
way than, say, a musical composition. The production of divergent results
in a listening experience is contained within a subjective experience, and
the production of divergent results in composition, has an effect in a
domain of sonic result. In the case of other activities, such as deejaying,
divergent outcomes may not easily be achieved in aspects of
composition, but they can be achieved in terms of deejaying. In sampled
music, it is not possible to produce musical compositions in detail, but it

36

is possible to improvise the sequence of tracks and their superimposition.
In the case of DAW based performances, whose objective is to provide
divergency in terms of musical composition, each individual DAW
controller offers different modulation options. However, it was found that
their divergency (in terms of musical composition outcome) needs to be
limited by their design specification. Two performance paradigms,
however that did not have this inherent limitation, but only existed in a
practical sense, are the modular and live programming environments:
while it is virtually possible to make any musical performance and
modulation from these types of system, there are some current practical
limitations.

3.4 Thesis statement
Regarding current tools for conventional live electronic music, there
seems to be a space for divergency, in terms of composition and
transformation, which is limited. For most part, dance electronic
musicians are surprisingly attached to performances where all the
musical material is prepared beforehand. This provides them the ability
to provide any musical modulation (since it was carefully composed
beforehand), and a safeguard against performance mistakes. However,
this also challenges the live and collective sense of the music
performance. Often the live-ness of the performance is relegated to
tweaking of a sound parameter, or a change on how many times the
same loop is repeated with respect to a studio version. Collectivity of the
performance, is often relegated to the mere fact of sharing the physical
and sonic space. It comes as a surprise given all the available
technologies, that music making tools are still offering the musicians with
the same loop-based paradigms, with limited modulation algorithms. In
most cases, the improvised parts of musical performances need to be
very simple patterns within the constrained possibilities of a software.
This thesis intends to contribute with the production of one new mean of
satisfactorily improvising conventional live electronic music without
needing prepared musical material, and allowing exploration of
composition aspects at the performance time.

The topics explained to this point seem to avail the idea of a tool with
more potential for divergency. Theoretically, such tool would be well
appreciated under the reading of some electronic music related value
systems such as the underground electronic music genre and close the
circle of live-performance versus collectiveness in certain contexts of
electronic music performance. The key aspect to success to this project,

37

therefore will be defined by divergency, affordance of composition, and
affordance to modulate this composition. Specifically on how the product
affords fluency, originality and flexibility in the live performance of
conventional electronic music.

38

4 Development
& production

This chapter explains the development process of
what will become the Virtual-Modular environment.
It starts with an outline of the design process,
where a reflection about the theoretical frame lead
to the fundamental concepts and processes that
will be used in the production process. In a sense,
the definition of the design concept works as a
theoretical frame, but this time, it is established
with a specific conceptual solution in mind. The
explorative design process starts from the
fundamental level, meaning that it creates the
most basic rules of the intended music
environment. During the development of this
project, two design processes took place in parallel:
the design of the Calculeitor controller, which is a
hardware and the development of the modular
environment, which is an idea that gets tested by
the creation of the Virtual-Modular environment.
Relative to these items, the idea of the modular
environment is established in the Fundamental
level explorations chapter; the development of the
hardware is explained in the development of
calculeitor chapter, and finally, the development of
the Virtual-Modular environment gets explained at
the exploratory iteration in the Virtual-Modular
environment section. Finally, this chapter contains
a section where the potential of the design concept
is explored, as if its development was sustained
more years in the future.

39

4.1 Outline of the design process
Given that there are no known specifications for the end product, the
development of this thesis was based on iteration. Iterative processes
are very common in product development. They are inherently divergent,
consisting of a repetitive application of gradual changes to a solution.
Each iteration consists on design, testing and evaluation or analysis
(Laurel 2003, 176) as displayed in Fig. 6. Following an iterative process is
a double edged sword because the scope of possibilities to be explored is
limited. The negative aspect of this is that the method does not
guarantee an arrival to the best possible solution since not all the
possible solutions can be by the heuristic. The positive aspect is that it
allows the creation of solutions where other heuristics could take
potentially infinite time.

Figure 6: Iterative design process Laurel (2003), p.176

40

4.2 Definition of the design
concept
Examples of composition environments such as Pure-Data, Euro-rack, or
the mere idea of modular composition are based on a concept which is
interesting to this project as mean to achieve divergence in music
composition. These environments have served as tools for sound and
music experimenters to create sounds that were previously not possible
using traditional instruments. The initial enthusiasm to explore these
sounds, was because they were generated electronically which was a
novelty. The fact, however, that this exploration is still occurring is
because the modular environments allow the users to construct their
own synthesizers and composition systems. Hence, as a composition or
performance paradigm, modularity offers an additional dimension of
divergency in comparison to mechanical instruments: the ability to alter
the behaviour of the instruments in real time. This modularity is
henceforth used in this project as the design core concept.

4.2.1 The three domains: environment, system and music

For a modularity to exist in the same sense as modular synthesizers or
programming languages, environment is a crucial base concept. One of
the first ideas that comes to mind by the mention of the term
environment is the Earth’s ecosystem, the environment of living things.
Organic living systems can only express in the context of the physical
world, (Maturana and Varela 1980, 1994) across a concrete set of
dimensions, and given the environment and the nature of the systems,
they are characterized by a certain set of rules. A living organic system
would not make sense, for example, as a computer program and vice
versa. In this case the intention is not to refer to environment in the
sense of the musician’s presence in the ecosystem, as Waters (2007)
would. This accounts for a complete definition of a musical performance
as species that live in an ecosystem. For the design of modular
composition systems, however, a broader idea of environment is needed
which is not limited to ecosystem. The idea of ecosystem, also conveying
the idea of a framework of interrelations between elements, could be
considered like a particular manifestation of environment. This opposes
to Waters’s (2007) subordination of environment to ecosystem (where
environment is one of the parts that form the ecosystem). Environment
herein will be considered as a conceptual –or perceivable– system which
is capable of containing systems, allowing these systems and their parts

41

to interrelate, and provide means to produce and organize these
systems. Under this concept, henceforth, ecosystem is one possible
instance of an environment. This view of environment is shared within
the field of computer programming; with the so-called programming
environments, which incidentally may the second idea that comes to
mind when thinking about environment. Some other examples of
environment are Euro-rack and Pure-Data, where a set of rules facilitate
the emergence of synthesis systems. Furthermore, it is possible to
consider the domain of mechanical construction as an environment
which facilitates a certain gamut of musical systems (instruments)
among other things. These last three examples are mentioned at the
centre of the Fig. 7.

Environments therefore, are defined here as the means of production and
manifestation of a system. In the case of music, environments do not
directly create music8 but instead afford the creation of music making
tools, as for example a particular synthesizer in the environment of
electronics. This thesis will therefore refer to environment as a system
that is intended for the creation and use of other systems. Under this
definition, examples of environment include programming languages,
modular synthesizers and building toys.

The design of a composition environment implies three different design
outcomes or design layers, as represented in Fig. 7. The last and least
abstract layer is the musical outcome. The gamut possible musical
outcomes is delimited by the affordance of the music creation system.
This relates the musical outcome layer to the second layer: the design of
music making systems. The range of possible musical systems, again, is
limited by a lower layer. This brings us to the first layer, which is the
environment design itself. Defining this three-layer design challenge
reveals the radical difference between an environment design and a
music tool design. While the design of a music-making tool affords a
number of musical outcomes, the design of an environment, allows a
number of possible musical outcomes times a number of possible
musical systems.

8 As an illustration, many programming languages cannot produce music

42

Figure 7: Three design and outcome layers

Each of these layers may be referred to as a different domain, meaning
that each layer can have a different set of terms, and each term can
have a different meaning depending on which domain is being analysed.
For example, deficient user interface feedback in the musical domain
does not imply that there is a defective user interface in the system
domain. In practical terms, the system that is producing the music may
be very clear because the interface is representing it in an intuitive way,
but the way that this system is representing the musical outcome may be
inadequate. The environment will be developed upon the affordance of
programming languages and digital electronics, which are a perfect fit to
describe the intended discrete nature of the environment.

Having defined the concept of a three-layered musical environment, it is
now possible to outline the project’s exploration process, as shown in
Fig. 8. It is possible to start with known live-composition elements, such
as sequencers, and use them as modules. The ability of sequencers to
form part of a modular network is proven by their use in analogue
modular environments. In this case, prototypes of sequencers were
programmed in javascript, with the ability to exchange digital signals.
This experiment revealed a method of how to break down composition
elements into sub-units that can be used as building blocks to many

43

other composition modules. Finally, in order to produce meaningful
conventional live electronic music performances, higher-level modules
(building blocks) were designed. These made it possible to create
improvised music. Each of these stages did proceed as iterative
processes, starting from a preconceived idea, and changing in
accordance with testing.

44

Figure 8: Representation of the environment design process as an analogy

45

4.2.2 Event-messages as a communication medium

A strong reason for Euro-rack being a good tool for experimental sound
performances is its freedom from musical structures. This same reason,
however, explains the limitations of the same tool for the composition of
conventional electronic music. It is related to the type of abstractions
upon which these work. The composer’s overwhelming preference for
systems which are limited in divergency, such as DAW based solutions
(like Ableton or Maschine) is related to their composition abstractions
being based on conventional musical concepts such as notes,
arrangements and chords. Working with these abstractions makes the
composition of conventional electronic music easier. On the other hand
more divergent, modular composition environments possess continuous
abstractions (e.g., voltage, clicks, transients). With modular synth
environments, expertise is required to achieve musically conventional
results. One example of this in the Euro-rack environment, is the
difficulty to achieve polyphony: while polyphony is a strongly expected
feature on conventional music, it can only be achieved by having many
copies of each analogue voice, or by using a digital synthesizer system.
Although current modular sound compositions systems can achieve
musically conventional results, they are not designed with this function in
mind, and tend to make this task harder.

Other conventional music representation which is problematic by using
control-voltages, is notes. Instead, in Euro-rack, tone (a continuous
expression of frequency) is usually represented by a voltage on a scale of
one volt per octave (Doepfer 2018). This has the advantage of being able
to represent tones outside conventional scales. This representation,
however, can become problematic when it comes to more conventional
compositions. In this case, physical effects such as thermal coupling or
electromagnetic interference could lead compositions to go out of tune.

When it comes to the improvisation of more conventional music, a
musician will need discrete events in order to represent abstractions such
as notes and scales. In particular, the communication between modules
needs to allow the coexistence of more than one information bit at a
time, something that Euro-rack modularity does not allow given its
continuous, analogue electronic signal paradigm. By contrast, the
parametric composition nature offered by Squarp Pyramid inspires the
creation of a system that manipulates musical events, with a
communication protocol similar to MIDI. This allows the expression of
notes, polyphony multiple-voices and other abstractions of a discrete
nature. The task ahead consists of specifying a nature of this language
outside a strict standard like MIDI.

46

A concrete example of the frontier between event-composition and
signal-composition can be observed in the Pure-Data environment. Pure-
Data contains two different types of signal that can propagate: one type
consists of values, symbols and bangs while other type are sound signals,
which need treated differently because of the different types of
processing that each requires. In the context of Pure-Data:

[T]he thin [connections] . . . are for carrying sporadic messages,
and the thicker ones (connecting the oscillator, the multiplier, and
the output dac~ object) carry digital audio signals. Since Pure-Data
is a real-time program, the audio signals flow in a continuous
stream. On the other hand, the sporadic messages appear at
specific but possibly unpredictable instants in time. (Puckette 2006,
17)

A signal is a continuous stream of a continuous value or its simulation.
Examples of signals are the voltage level on any cable of a modular
synthesizer, a sound buffer, or the position of a knob or fader on a
control panel. An oscilloscope view of a possible signal is exemplified in
Fig. 9. An ideal signal represents with perfect precision the state of an
analogue output and is sustained for as long as the output remains in
that state. Real signals, however, are subject to problems such as radio-
frequency noises, thermal coupling, hardware defects, resistance in a
cable and capacitance. A signal is therefore best suited to represent
events of continuity.

Figure 9: signal example

47

An event that occurs at a moment in time, containing one or more
discrete values hereafter will be called an event-message. Some
examples of event-messages include MIDI, UDP packets and telegram
messages. They are used most often to control discrete behaviours, such
as states, tones, scales and metrics. The manifestation of event-
messages is numeric, as exemplified in Fig. 10. An event-message,
manifestation thus, will best represent events of discrete behaviour.

The distinction between event-messages and signals seems similar to the
distinction between continuous and discrete signals; these new names
were introduced to specify this distinction into the domain of modular
composition. For example, a Euro-rack clock signal could be thought as a
discrete signal, but for this case study such signal needs to be in the
category of signals. on the other hand, with different eyes, an event-
message signal could be considered as continuous when it is being
transmitted via wire. A need to specify the distinction needs to be made,
based on the intention of this signal in a musical environment. This
distinction, as observed, takes a slightly different meaning than speaking
of continuous and discrete as an engineering or physical aspect.

The new distinction also allows for the definition of an ideal signal and an
ideal event-message: where a signal ideally spans along a certain
amount of time to represent some value (such as envelope), an ideal
event-message would happen in no time. This implies that, whereas a
signal defines a timed event in a continuous timeline, an event-message
divides time between before and after, ideally taking zero time. To make
distinctions between event-messages and Signals, the account is for the
intention of the signal rather than its actual continuous or discrete type.

48

Figure 10: event example

The concept of event-message is useful to this project because, as
explained before, continuous signals have served for divergent
composition of experimental sound, whereas discrete event-messages
can express conventional music abstractions. These conventional music
abstractions in the context of a modular composition system ultimately
are expected to allow a modular system to produce conventional music,
as it will be explored in the following chapters.

4.3 Fundamental level
explorations
There were two preceding explorations done by the author which helped
set the interest for the present thesis. One of them, proposed the idea of
creating a musical building tool as an analogy to building blocks, called
Brocs (Aldunate Infante 2013b, 2013a). This exploration opened the
interest in musical composition as construction of systems, which led to a
second, virtual implementation of a similar nature named Licog
composer. The first, being a thesis project, led to a concrete product of
physical nature. The second project, being an exploration without a
purpose, has less defined boundaries and was implemented twice using
Processing language, and later one incomplete attempt was started
using javascript (Aldunate Infante 2014).

During these explorations, two naming conventions came naturally to the

49

dialogue. Given that each component has inputs and outputs, modular
systems of this kind have an inherent direction. By the words down and
up, if referring to the order of signal propagation. A module upper with
respect to one other module is meaning that the output of that module is
connected to the input of the refereed module. The same in the opposite
case: a module which is down the patch, is receiving signals from the
refereed module. The same idea can be explained with the analogy of
parent and child sequencers, where the analogy still refers to the
hierarchy of connections in cases the up and down.

The mentioned building blocks represent the most basic components in
the ambit of conventional music, namely notes and discrete events. In
the context of this thesis, the environment paradigm where each
component is a single sound event will be referred to as molecular. By
developing these molecular environments, some interesting emergent
features were discovered, which ultimately motivated an ongoing
exploration. Nevertheless, a hardware version of such device is still
commercially challenging, because of the high costs of having many
copies of a micro-controller based component, and the difficulties that
pose interconnecting the necessarily large quantity of these together.
This, together with the vast area that was left unexplored in the previous
experiences, are the reasons why the molecular paradigm remains as a
reference rather than a complete specification for the development of
this thesis project.

4.3.1 Composite elements environments

The first exploration on how to define a modular composition
environment consisted in the design a module with the behaviour of a
sequencer which could be instanced many times in a simulated
environment. The sequencers in this virtual environment had connection
nodes that allowed them to communicate. This module was largely based
on real life analogue sequencers, an important higher-level composition
device in most modular systems (e.g., Euro-rack, Moog Modular.). The
difference is that these were simulated by using a programming
language, meaning that all the sequencer functions and effects were
digital.

In this exploration the interest was on the amount of different systems
that could be built with a small variety and amount of modules. Another
topic of interest was the manoeuvrability of these systems from a
composition point of view. It was not important whether the system
would comply with these metrics to the full extent, but rather whether it
would display a potential on those aspects. In other words, the idea was

50

to explore with very basic modules in order to imagine future
development directions. In addition to the creative exploration it was
interesting to note different design challenges that emerge naturally
from the idea of a modular digital system.

From that starting point, many factors of their design were subject to
changes as they are adapted from an analogue to a digital environment.
One design challenge was defining which parameters need to be user-
defined, or what type of messages would them be exchanging, and how
they would react to these messages. The intention is to explore the
possibilities of adding modular behaviours to a sequencer and
understanding how a module that can generate music on its own, can
also attain emergent features when they are taking part in a network.

Figure 11: representation of a mono-sequencer

A basic simulated environment for modular elements was programmed
using javascript. It defines a graphical user interface, and a module that
can be instanced multiple times, which gets graphically represented in
the mentioned interface. It contains a layer on top that defines
behaviours such as interaction, response to messages and user defined
behaviour options. The Fig. 12 is a snapshot of this javascript prototype.

51

Figure 12: snapshot of the experimentation modular environment

The first exploration led to the idea of using a sequencer as an event-to-
event mapping matrix. The first prototype of a mono-sequencer treated
the horizontal axis as a time axis, and the vertical axis as different
voices, making it a 4 voice, 4 steps sequencer. First, these responded
sequentially to a global clock, and in a second attempt, their play head
would only change in response to signals that would come programmed
from a parent sequencer. A clock active setting needed to be added,
however: if none of the sequencers is being triggered by a clock or a user
input, there would be no original event to propagate in the first place.

This configuration permits a sequencer to be re-purposed as an event re-
mapper: if a sequencer sends a [0,1,2,3] sequence, the child sequencer
would play as a normal sequencer, but any other sequence such as
[3,1,2,1] will cause the child sequencer to play in non-sequential order
(as illustrated in Fig. 13). In this way, the lower sequencer matrix
becomes a matrix that maps input signals to output signals.

A usage example of this feature would be to create a palette of notes in a
scale that are sequenced by the parent sequencer. Or perhaps, a palette
of chords. It already presents us with an improvement over the
traditional sequencing approach because, if a musician wanted to change

52

the harmony of a melody, instead of needing to reprogram every note on
each step, it would be possible to re-map the musical scale by changing
one event per tone. This approach also allows complete transformations
to a melody, if for example the user starts mapping all the child
sequencer events to a same note, while the parent sequencer is playing
a sequence with many distinct notes, and then start adding tonal
variations, thus obtaining a melodic progression which was not possible
before in most digital sequencers.

Figure 13: example: the sequence 0,1,2,3 is being remapped to 0,2,-,0, and
then to 1,3,-,1

Each possible sequencer value (vertical axis) of these sequencers
corresponded to a different output node. This permitted the route of an
event to change from one path to another depending on the step: an
effect similar to what can be done by using more than one analogue
sequencers, if they have dedicated step outputs (such as the Korg sq-
10).

Each of these sequencers has an id number that corresponds to the order
at which sequencer was created. An interesting emerging problem is that
some behaviours may be different depending whether the connection
goes against the order of the id numbers or with the order of the id
numbers. To exemplify: if sequencer n°2 is parent of sequencer n°1 is
against the id order, and the inverse order of connection would be with
the id order. This is because the id also dictates the order at which each
sequencer’s internal functions are processed by the computer’s
processor. If each module is set to respond instantly to any signal, there

53

is no big difference on the response regardless of whether the connection
goes up or down the id. Only makes difference with respect to what
output number each child is connected to similar to Pure-Data (Puckette
2006, 212). But if the modules are set to wait for a clock step to respond,
there will be a difference: if a connection goes up the id number, upon
clock tick, the module will have already received the signal to which it
has to respond at clock time. If the connection goes down an id when the
clock ticks, however, the parent would have not yet sent the signal to
which the sequencer has to respond, and therefore, it will not respond
until the next clock tick, adding a delay. This problem resembles the one
of digital systems design, and is the reason why a processor that has
millions of transistors, cannot make more than one sequential operation
per clock tick (Vahid 2007), which is contrasted by how a sound signal
can go through a full analogue process at virtually the same speed
electricity travels across the wire, as seen in field programmable gate
arrays.

Figure 14: a. a — instant response generates a negligible time difference
regarding response up and down id’s., b — When elements are clock
bound, down-id connected elements will be one clock behind.

This is an interesting problem for which a solution is needed: if this was a
hardware situation, there would be no clear rule, because the elements
would not be updated progressively as in the computer simulation. The
result is that instead of a clear timing rule, whether the response is
delayed or not will depend on the tiny difference of time each processor

54

takes to receive and respond to a signal.

The first proposition that was tried, consists in that a module, although
receives and reacts instantly to all incoming signals, it buffers all the
resulting signals into an output buffer, is set to be sent in the next clock
tick. The second attempted solution consisted on processing all the
elements in two separate processes, in the same a software would treat
the drawing of graphic layers if it wanted to ensure that elements to be
drawn from an array, would be drawn in a different order than the one
specified by the array. The problem that emerges from applying the first
solution, is that the delay still happens, but in an even less intuitive way:
the delayed reaction that is caused by sending a signal to a module with
lower id number is relegated to that child module, making the cause of
the phenomenon less understandable. A similar behaviour results when
trying using the same type of buffer for the inputs instead of the outputs.
The second solution idea was applied by giving to each element two
signal queues: one queue for the incoming messages, and other queue
for the outgoing messages. Upon clock, all outgoing messages are sent,
and after clock, all incoming messages are processed, thus generating a
new set of outgoing messages, effectively generating a layering of time.
This approach generated a consistent behaviour of delaying the signal
propagation 1 clock per connection, as seen in Fig. 15.

55

Figure 15: Demonstration of a consistently delayed signal by one clock per
connection

The second solution mentioned, however, comprises adding a whole
clock delay for each node. This compromise reflects that the system
needs not to be intended as globally clock synced except for some
modules that are clock-based, such as a sequencer. In a modular system
whose modules may need to be coordinated to a clock signal, to be two
distinct types of processes need to coexist: the processes which
accumulate tasks until the next clock tick, and the processes which
respond instantly, regardless of the clock. In this way, it must be
expected that signals flowing from one clocked device to another, will
obtain a delay in a way analogous to micro-controllers. Signals going
through a non-clocked path, on the other hand, get processed as soon as
possible, in a way which is analogous to a field programmable gate array.

There are some other clear interesting features that suggest lines for
further development. For instance, by extending the capability of each of
these mono-sequencers to a complete sequencer, many other expressive
manipulations would be possible than the ones offered by isolated
sequencers. One example is that the signal emitted from one sequencer
to another could be comprised of many numbers (in this exploration the

56

communications were limited to single numbers) in such a way that a
static message could be transmitted and routed through many
sequencers. In these polyphonic devices, some bytes could be intended
as destination messages which dictate how to route and transform the
message, while some payload bytes may go through the whole patch
sometimes altered and sometimes forwarded until a destination (e.g.,
synthesizer). This will provide with a concept of multi-layered message
processing: one layer which determines the physical route taken by a
message, and other layers that determine the effect of this message
once it arrives to the final destination. In this way one could use these as
modules as if they expanded a single sequencing interface9, and still be
able work with them as modules that expand the capability of the
system, as in modular environments.

4.3.2 Finding the primary elements of the environment

For the design of an environment, it seems impossible to define the
perfect specifications because it is unknown what the future elements, or
building blocks will require from the environment to be possible. Poor
definitions of an environment could lead to excessive compromises in
versatility, and may disallow the existence of certain components. For
this, a particular iterative method was devised. This method allows to
discover the desired basic building blocks for any given environment that
aims to afford the creation of a certain set of systems, and by
consequence, define some generic characteristics of the environment
which host these building blocks. The use of this process led to a good
set of specifications that proved useful for the environment being sought.

Given an initial set of systems that the environment is supposed to
enable, the method allows to break down these system into increasingly
basic sub-units until left with a minimal set of different units. It is
expected that the resulting parts can be used build any of the initial
systems on the set. An example: if the objective is to make a system of
parts and pieces that could be used to build any transportation machine,
an initial set of systems would be a set of transportation machines. To
make this process iterative, the initial set of systems are not considered
any more like systems, but like units, which can be potentially made of
other sub-units.

The first step is to conceptually explode the current components, into
sub-components that permit building easily any of the initial components
(e.g., motors, wheels). This is what appears in Fig. 16 as the divide
transition between components and sub components. If this was the only

9 alike Roli Blocks (“Blocks: The Instrument That Grows with You” 2018).

57

step to be iterated, it would lead to a set of sub components that can
effectively build any of the initial set of components, but probably many
those components will be compatible with one and only one of the initial
components. This is why the second step consists on finding similarities
among those sub-components: one sub component may be adapted to
comply the same function as two-sub components, thus reducing the
amount of components and making each sub-component more general-
purpose. This also leads to a standardization in the way the components
connect one to another, which leads to a third necessary step:
homogenizing the ways to bind or connect those components together.
The third step could be thought as part of the second step in the sense
that communication routines can also be considered sub-components.
This is seen in Fig. 16, in the arrow that points down from the sub
components. Each iteration consists on taking the sub-components as
the new components, and repeating the process, as expressed in the
remaining arrow of Fig. 16. Doing this process for enough iterations lead
to a certain set of general-purpose components, and hopefully very few
components that are specific. The interesting part is that using the
general-purpose components that result from the operation, new
components can be built that extend the possibilities of the initial set
(Figs. 17, 18).

58

Figure 16: graph of the iterative process

Figure 17: Example of emerging components

59

Figure 18: Additional example of emerging components

It must be understood that this process can alter the characteristics of
the initial set of components, when they are built back from the resulting
base components. This depends upon what parts of the final components
are required to remain. Following the example of the transportation
systems, the smaller set of resulting pieces, can only be achieved by
overlooking factors such as appearance and energy-efficiency of the
resulting transportation machines. The same phenomenon is exemplified
with the playing card graphic icons in Fig. 19.

Figure 19: Example of changes in the initial components after the operation

Another caveat to the process, is that each component could have user-

60

defined properties which change properties of the object. In this way, the
process can be cheated in a way that the result is just a single
component that has so many configuration options, that it can cover any
functionality. In the example of the transportation systems set, it would
be like defining a block of metal as the base component, because it can
be machined and moulded in any way to generate different components.
Here the designer’s common sense must take a stance on how adaptable
each component needs to be, according to the desired context of
application. For some cases it does make sense that a component
changes role by using a user-defined parameter: for example a bolt-nut
component has the user parameter of how many turns to screw a bolt,
which is a perfectly reasonable user-defined parameter, while allowing a
wide gamut of configurations. For the current case of musical system
design with an eventual application to physical units that integrate many
of these components, there is a limit on tweak-ability, and the scripts
that define their behaviours should be simple, and as monolithic as
possible avoiding an excess of user input interfaces, or switch
statements, for example.

The idea of molecular composition, as introduced in the Brocs and Licog
explorations, was an interesting starting point, although they needed to
be re-defined in many aspects for the purpose of this project. It is worth
exploring an environment for molecular composition, based on the idea
that an environment that can handle the musical molecules will also be
able to sustain any other, more complex modules. Additionally, the
molecular paradigms explored in the aforementioned experiences were
very limited in terms that the environment was specified only for global
musical events, meaning that resulting musical events could not be
altered once emitted, but would take effect instantly, as if each
component of a composition would have its own speaker. A different
environment logic is required to build a modular environment with
endless possibilities in the same fashion as a modular synthesizer, thus
allowing divergence. Specifically, the best way to re-define the molecular
environment would be to proceed with a buildification process using as
the initial set of components a mono-sequencer, an event-mapper, an
arpeggiator and a Licog.

With respect to the communication protocol, if there is anything quaint
on the way that a device is triggered, or about what a device outputs, it
would compromise the versatility and compatibility of future devices. A
good illustration, as always, is the Lego building block. By good luck or by
a good decision, Lego has been able to keep innovating and creating new
pieces, and allowing the user to build a very wide range of things, while
still keeping compatibility with their earliest pieces. This quality depends
on that very first design of the mechanical joint that the first Lego block
had. To apply the buildification process in this prototype, a new modular

61

environment was simulated in javascript. To this environment, a
sequencer and a Licog modules where programmed and instanced in a
way that it was possible to use them in connection. For each of the
simulated components, its procedures were analysed as features or sub-
components, in order to merge or split them into different functional
units, or modules. According to the explained buildification process, the
intention is to have the minimum possible amount of different
components that would allow building the maximum amount of the initial
set of components. It was expected that from exploding these two
components, it would later be possible to build other types of systems
such as arpeggiators, harmonizers, event mappers and so on.

To encourage modularity as suggested in the last exploration a global
clock was not any longer used (Fig. 20, a). This out-ruled the Licog
modules as they relied on the global clock. However, this opens the
question of how clock-bound (e.g., a sequencer) modules could be
triggered in an environment that is exclusively modular. In Pure-Data
environment, any signal that is sent also serves as a bang which
determines when to propagate the messages. This leads to a frequent
need for modules to have several different outputs and specific
operations. If there is a need for a module to wait for a clock signal in
order to propagate, a specially dedicated module or additional inputs on
each module would be needed (Fig. 20, b). As the intention was to
homogenize the pieces and communication methods to the minimum, it
was defined that instead, a message contains a header number which
can be interpreted by each module depending on the module’s functions.
In this way, the distribution of the clocks becomes modular, with no
requirement for a global clock bus. This allowed the existence of clock
messages as distinct from musical event-messages, and therefore the
connection between modules can be reduced to as low as one input and
one output, while still allowing several functions (Fig. 20, c).

62

Figure 20: Three approaches to distribute a clock signal in a network of musical
devices

This idea was later reinforced by the modelling of a FIFO module, which
also needed distinct functions of store message and send buffer
messages. If the functions were indistinct, it would not be possible to

63

delay messages as it is required to make a counter, and to make a Licog
module.

Given that the messages are typed and not dependent of an input, the
clock message becomes a generic trigger message or bang which could
have been originated in any other way. More interestingly, it would be
possible for modules to manipulate a trigger signal into other type of
signal by simply altering its values. A simple module was devised which
would record any received message, except for a clock message. If a
clock message is received, the currently recorded message would be
propagated to the next modules. This facilitates the creation of memory
and delayed triggers. This module later derived into a module which
could hold any number of event-messages that could be triggered
sequentially, in a first in first out (FIFO) fashion.

One of the most obvious modules, which was modelled at the beginning
of the experimentation was a module that could send a digital signal to
all of its outputs, once it received any signal on its input. After the idea
that clock signals were mere messages that were interpreted as clocks
by a module, it was defined that this signal generator module could
actually be a signal modification module. This module could transform a
trigger event-message into a musical event-message or any other. The
module effectively operates one input signal for it to become another
output signal. This module also could perform conditional operations as
to define whether the message is propagated or not upon conditions.

One module that emerged and disappeared during the process was a
multiplexer module. It was designed to send an incoming signal only to
the output that is indicated in the signal itself. The utility of this module
was replaced by the ability of operator modules to have conditional
functions: by using many operators, it was possible to build the
multiplexer.

During this process, most messages consisted of three bytes, making it
potentially MIDI compatible. Two, however, were enough for the extent of
this exploration: one number to select a function, and other number to
set a value. Any additional numbers would serve to specify more in detail
a theoretical note trigger. This led to the additional idea that messages
could be of variable length, in which case the header could also integrate
the definition of this length.

It was concluded that four modules could describe a wide range of
composition elements such as a sequencer, an arpeggiator, a Licog
element, and a harmonizer, between others.

• Input module: it converts any defined input into event-messages. its
only parameter so far defines which stimuli triggers a bang. In the
javascript prototype, so far, can only be either a clock pulse or the

64

press of the space key. In a physical prototype it will probably be
able to respond to hardware changes, and to any incoming MIDI or
message signal.

• operator module: it performs one operation for each byte of the
message. The operations can be arithmetic (e.g., adding one to the
second byte of the incoming message) or boolean (e.g., propagate if
a condition is true), making it effectively an input filter (e.g., the
message passes only if the first byte is 0x80). The operator calculates
and propagates the input as soon as received.

• FIFO module: this module stores incoming bytes in an array, if the
byte header | 0xF0 equals 0x20, and sends + deletes the oldest byte of
the byte header | 0xF0 equals 0x00. There are many other possible
headers that may be implementing such as getting the message
without removal, getting all the messages, getting the newest
message or getting a specific message by index.

• Output module: converts bangs into output. Depending on the
context, the output module may send a MIDI signal, trigger a CV,
turn a light on or trigger a solenoid.

These modules would share a common, simple language of a string of
integers where:

• first byte defines the function of the message and each module has
a different set of reactions for each message header.

• There is a specific header for longer messages, and if the message
has this header, the component must wait for a closure byte to stop
reading the message. In such case, an escape character needs to be
defined which takes effect in the context of long messages, so that
sending any byte remains possible.

65

specification of event-messages

This current idea of composition elements becomes similar to the
implementation of Pure-Data, were modules can exchange discrete
information, but in this case leaving away the continuous variables that
Pure-Data handles such as audio buffers. This idea of getting a sub set of
elements from the Pure-Data composition environment relates this
project to Liam Goodcare’s context sequencer (Goodacre 2018), which
builds higher-level components by using Pure-Data. In this process,
however the intention is to generate an environment which is dedicated
to live composition, which includes the patching of modules through a
physical interface.

66

Figure 21: 16 steps sequencer

The Fig. 21 above shows how a 16 step sequencer can be made out of
these components. Licog units are also easy to implement with these
modules, as a signal can be stored in a FIFO until next clock, and send all
messages in FIFO on every clock to the next Licog. It is also possible to
build simple arpeggiators, scale mappers, and so forth. This definition of
basic modules satisfactorily covers the domain required domain,
although the definition of notes-off and control messages remain as an
interesting future exploration.

Despite the idea of creating a set of hardware micro-operators that
replicate this environment is very interesting, as a project it will be
necessary to focus on more complex, and more user friendly ideas of a
module. Modules built upon these modules are not easy to manoeuvre as
the built entity: a built sequencer, for instance, would not be user friendly
as presented in the picture, since changing the sequence length involves
changing the structure of the system. It is also interesting to note, that
given a definition of the environment that specifies the role of a module

67

and the roles and characteristics of the messages, future modules can
also contain aberrations of the resulting basic units, without
compromising the compatibility with the rest of the environment, as long
as the inputs and the outputs belong to the same specification.

4.4 Development of Calculeitor

calculeitor design

When the development of the hardware started, there was no definition
of a module, neither a proposition of making a modular environment. The
interface would allow to explore the dynamics of performing with an
environment that did not yet exist. The interface, thus, was based on the
widely used 16 back-lit buttons matrix, resourcing to parts that are
available in the market: a micro-controller, 16 button silicone keypad a
screen, encoder, and tact switches. The decision to work with 16 buttons
intended to facilitate the design process, taking into account factors such
as costs and time involved in the design of a mechanical interface. This
prototype herein is named x16, which reflects the 16 RGB LED’s which
uses. The design of a standard interface allowed early on to experience

68

performing music with different interaction modes. It also allowed to
measure the capacity of different micro-controllers. Depending on how
the environment evolved, there would be a requirement to modify the
interface to allow these differences.

The very first prototype of this device was attempted using a Teensy,
because of its music-related capabilities and better processor. Teensy
was discarded mainly because of the realization that the platform is not
open-source, and that the libraries were adapted to the Arduino language
in very inconvenient ways; specially regarding the pin address mappings.
The immediate following step was using an Arduino pro-mini, and
expanding the number of pins by using multiplexers, and using Sparkfun
components for an easier build. In order to map the limited amount of
pins of the AtMega328 to the large amount of pins, a multiplexer was
added. This design was devised throughout many iterative sketches, of
which the Fig. 22 is an example. The amount of connections required for
this prototype caused inconsistent behaviours in a prototyping board
(Fig. 23), because of the complexity. A printed board was designed in
KiCad and requested from a board manufacturing service, in order to
have a prototype of consistent behaviour.

69

Figure 22: Sketch of the x16 prototype electronic design

While programming the firmware of this first version of the board, some
of the limitations of the hardware became clear. The Atmel Mega 328
processor has insufficient memory to handle all the necessary processes,
and the programming of the firmware takes too long time as to use it as
a medium to develop the environment. Also the user interface LED’s
were too dimly lit and thus were not noticeable in places with strong
lighting. This happened because, being behind a multiplexer, the micro-
controller needed to scan through each led pin to create a persistence of
view effect. It was decided to use these as controllers to access the
computer simulation of the modular environment, and start developing a
more powerful version of the same device with an Atmel Mega 2560
which would allow truly persistent LED’s, multi serial ports, and more

70

program memory.

Figure 23: development of the electronic schematic for the x16 prototype

The enclosure in this version, thus, was designed with enough space to
host a Raspberry Pi, which served as the main processor. The Raspberry
was connected via serial with the custom board, and it was programmed
to run a Node-Js service upon boot, allowing the device to start without
requiring screen or SSH access. Devices could be connected using MIDI
over the Raspberry’s USB ports, which are detected when the Node-Js
program starts. The Fig. 24 is a picture of one design sketch that was
used to design this enclosure, and the Fig. 25 is a picture of the result.

71

Figure 24: x16 enclosure design sketch

Figure 25: x16 calculeitor prototype

72

The following version of the board addressed the most important
limitations observed over the last prototype. It was designed with 28
buttons instead of the 20 buttons previous versions had, each of which
had an RGB LED (hence the name x28). The most important
improvement was the processor program memory available, the amount
of serial ports, and the intensity of the led lights. LED’s needed not to
rely on the persistence of view any more thanks to the WS2812
component, which possess a dedicated controller to store each colour
value. The first prototypes and the board design were developed in
Kyushu University (the Fig. 26 is a picture of one development prototype
for this version). Along with this new version of the board, the Virtual-
Modular environment was modified to be compatible with both boards.

Figure 26: Development of the electronic schematic for the x28 prototype

The enclosure of this version were first thought as build from acrylic
sheets, because of the accessibility of laser cutting. Later it was realized
that bending and manufacturing in acrylic takes more labour per part
than silicon casting. Many different approaches were modelled in
parametric cad software, to speculate in detail about the cheapest and
most ecological options available.

73

4.4.1 Networks

The design process of the networks happened in recurrence with the
design of the environment because the design and interaction of the
product is also involved in the mode of communication between nodes.
An example of this is that if the network is point to point, then the
expected interaction of the user involves patching the modules in the
same way as modules are patched in a Euro-rack system, mechanically.
Otherwise, in a common bus network for instance, the user would be
expected to virtually patch modules, as they are all already fully
connected from the start.

The modular environment, in terms of network need a different set of
terms since the roles of a hardware piece need not to necessarily
correspond in a one-to-one relation with the parts of the environment.
The first networking term, topology refers how a network electrically
connects different devices to form a network. Also, an item that has a
distinct identity in a network will be referred to as node instead of
module. Both, although in some cases are, they are not necessarily the
same entity. For instance, the crucial need to communicate several
electronic devices, is not necessarily parallel to the need to connect
different modules: a module can be sharing a networking device, in
which case more than one module can be represented by a single
network node from the point of view of the network. One real life
example of the device versus node difference is how a single computer
could represent two different IP’s in a TCP-IP protocol, and vice versa. In
this case, a computer could represent two clients while still being one
single node in terms of network.

The main challenge in inter-micro-controller communication is to create
an algorithm to prevent data collision. Data collision is when two nodes
need to send a message at the same time. A bus cannot support more
than one message at a given time, and a micro-controller cannot (or has
a limited capacity to) listen to more than one incoming message. This is
similar to spoken communications, where it is not possible to listen more
than one person speaking at the same time.

There are other important factors to take into consideration when
designing the communication, the most predominant being the
achievable data rate, because this determines the amount of interaction
that will be possible between units. The reliability of the network is also
crucial. The ratio of information that is lost against the total information
sent can be divided to form a data loss ratio. It should be 1 or very near.
Information can get lost mainly because the reception device may be
busy, because the message was destroyed due to noise, or because

74

messages from two nodes took place at the same time in a shared
communication line.

The previously mentioned factors are in tension with processing that is
required from each unit in the network, because the units need to do
other things than only communicate. If a network requires a highly active
participation from each node, the availability of the processor for other
tasks will be reduced, increasing the processor power requirement for
each node.

Regarding to the topology of the network, the directionality is important:
many networks work in a paradigm of master to slave, which most often
is implemented to a hardware level. For instance, most of master to
slaves network are connected using two buses, one where slaves use to
communicate to the master and other for the master to communicate
with the slaves. Networks which do not work under this topology, most
commonly being one-to-one, meaning that only two nodes can
participate at any given time Fig. 27. For a network that intends to allow
a heterogeneous interconnectivity, the most obvious scheme is point-to-
point. Under some circumstances, however, the ability to communicate
more than one node is a desirable feature of master to slave networks.

Figure 27: scheme of point-to-point networks

75

The required network also needs the ability of hot swapping: consists on
being able add and remove nodes to and from the network without
disrupting the communications or having the new node ignored. This is
necessary since the environment is intended as modular and thus needs
to afford re-routing of the communications to change the composition
system. Hot swapping, however can be virtualized in cases of bus
networks, as it will be explained later.

The modular network design starts with a careful consideration of
different communication options and their characteristics. The following
step consisted on iteration over different specific protocol ideas. These
were sketched in detailed drawings of the topology and the decision
trees. One of these sketches is shown in Fig. 28. Each topology can be
more or less challenging in different aspects. It can be generalized,
however, that for each possibility, different cases were put into test by
following the decision trees and their expected effects, checking if the
resulting device states could produce locked states or data collisions. The
most important cases taken into consideration were: a) a device is
powered up alone and then an additional device is connected, b) many
devices that are already connected are powered up all at once, c) one
device is disconnected from the network at run time, d) an event causes
a communication line to attain noise. From each one of these events the
network needs be able to recover and keep the communications. For
some protocols, specially the common bus based network cases, many
iterations needed to be performed in order to strategically define a
decision tree that does not get locked at any state.

76

Figure 28: Picture of one of the sketches where network types and topologies
were brainstormed

The first and primary type of possible network is point-to-point. The idea
of the point-to-point network is that each node is only aware of those
nodes whose inputs are connected to it. Other example is the software
Pure-Data. The most common point-to-point communication standard is
the RS232, which is similar to MIDI. The challenge with RS232 is that a
unit may need to receive signals from more than just one other unit and
point-to-point networks require one dedicated transceiver for each input
or output. AtMega2560 luckily has four RS232 pair of pins that could
permit this use. TCP-IP is another protocol capable of point-to-point
topology, which interestingly are used to communicate between the well
known Pioneer CDJ turntables. TCP-IP protocol was found, however to

77

require high level implementation that would discourage the use of low
level micro-controllers for specific use modules.

One idea to extend RS232 to attain multi-input capability is to use a
multiplexer. An RS232 reception pin (RX) would be connected
sequentially to different multiplexer pins, theoretically allowing any
quantity of outputs to a single port Fig. 29. This idea could work if the
system has other, parallel multiplexer that distributes to the sending
devices, an electric flag10 granting permission to transmit, as a
consequence of the multiplexer being connected. This idea herein is
referred to as polite serial since it is Serial RS232 with the difference that
the devices wait for their turn to emit signals.

10Flag is a simple concept used in electronics, where a boolean type of
information can be communicated or stored by using a voltage or its absence

78

Figure 29: scheme of the multiplexed input to form a polite serial network. The
TX wires can be branched without multiplexer.

Another protocol explored, also based on the RS232 was focused on
minimizing the required amount of physical serial ports: to run this
protocol, similar to polite serial, it would be required to use a serial input
(RX), output (TX) and a digital pin. It was based on the idea of a token
bus, but having a component that registers an address for each module
that is connected in the network. It was inspired in the Token bus and I2c,
thus it was named token bus homogeneous network or, in short, TBHN.
The concept is the same as in a token ring, only that in this case, there is
a token line, and to there is a module in charge of restarting the token
every time it reaches the end.

A shared bus network consists of a single bus to which all nodes
communicate Fig. 30. Two advantages of a shared bus network are the

79

ability to monitor the whole network by monitoring a single wire, and the
possibility of optimizing the flow of events for lower latency. There are
two drawbacks: one is that each node gets a portion of the bandwidth
that is in inverse proportion to the amount of nodes in the network
(whereas in the case of distributed, each network has a different
bandwidth). The other drawback is the loss of the physical interaction of
plugging and unplugging terminals manually: given that every node is
connected to every other node, what determines the messages to read
from the rest, is determined by software. The connection between
components, therefore becomes virtual.

Figure 30: scheme of a common bus communication topology

It is also conceivable that each node’s input and output is a common bus
network, thus allowing the desired physical, cable based
interconnectivity. This case can be exemplified with I2C Fig. 31: it would
be a candidate; if it allowed direct slave-to-slave communications in a
bus. However, each node could be thought as being both an I2c master
and slave, being a master of its inputs and a slave of its outputs Fig. 32.
In this way a protocol such as I2C can be turned into a point-to-point
network. This same idea can be extrapolated to most other common bus
protocols available.

80

Figure 31: Example of a master-slave scheme on a common bus network
topology, such as I2C

Figure 32: Application of a double master to slave communication scheme to
produce a point-to-point network

A feasibility exploration of using a common bus network that allows
direct node to node communication, a hybrid between Token ring and
master-bus polling was designed and tested. The topology and scheme of

81

this network is illustrated in Fig. 33. Token is an imaginary signal that is
passed from one node to another, sequentially. Every node acquires the
right to write to the bus only when it has the token, and it can pass it to
the next node once the writing is done. This is one of the fastest
protocols to distribute writing permissions, since it does not require to
use bus time for networking related information. All the bus time can be
dedicated to payload messages. This system will be referred to as token
bus homogeneous network or its abbreviation TBHN.

Figure 33: TBHN example

The network was set out to allow any node to broadcast information to all
the other nodes directly, and redefine a Master at run time in case a
master is unplugged, or not having a Master at all. Being a shared bus
network, as mentioned before, the interconnectivity among nodes need
to be determined by software rather than the physical connection.
Instead the changing of connections among the devices would be
software-based, it is necessary for the devices to keep track of addresses
on the other devices.

In a practical sense, each node needs three pins dedicated to the

82

network: a token input (TIP) pin and a token output (TOP) pin.11 Also a
common bus pin named COM, which reads and writes the serial bus. The
pins and interconnections among nodes are represented as squares in
the Fig. 33. The TIP and TOP pins are connected in chain from node to
node, while the bus pins are connected to the same cable among all the
modules. In this implementation the bus is different from an RS232 in
that both read and write pins are connected to the same cable, as
opposed to RS232 which use one for each function. This is the basic fact
that allows any module to communicate with any other module.

The protocol was defined under a set of basic rules. First, each module
has three states, consisting of Listening, Broadcasting and Connecting.
While in Listening state any normal node is on high impedance mode,
reading the serial bus. On Listening state, the node is also reading the
TIP pin. If TIP pin is set to 1, it switches to Broadcasting state. On
Broadcasting state, the node sends all its available information if any,
otherwise a “no information” header. Finishing this, it turns the TOP pin to
1, causing the following node in line to switch into Broadcasting state.
When any data is received, a node turns the TOP back to 0 if it was set to
1.

Every node has a unique ID, starting from 0. The node number 0 is
special role. When a node has just been powered up, it starts in a
connecting state. On connecting state, the node has no address, and has
the TOP on state 0. It is listening to all the broadcasts, and keeps track of
the highest address in the network. When its own TIP goes high, it sets
its own address to the highest + 1, writes a connected message to the
bus, and sets its TOP to 1. This should cause a chain reaction where all
the modules assign their addresses incrementally, if powered all at once.
TIP pin is pulled to the state 1, causing the first in line to start the chain
reaction from 0. A module can detect if there is a module before in the
chain by detecting the voltage on its TIP pin. It is normally high, but a
connected node sets this pin to low. When a node is on Connecting
mode, if it detects 1 on its TIP, and has not registered any address, it
means that there is no lower module. It will set its own address to zero.

A message in the TBHN needs to contain some bytes that indicate the
functions of the message: origin and header. An origin byte represents a
unique identifier that indicates what module has broadcasted that
message. This unique byte is registered on each other module which
intends to read messages coming from that module. The header byte
indicates the mode of the upcoming data. It is divided in two nibbles: first
nibble indicates the mode of the message (broadcasted, addressed,
empty, offline). The second nibble indicates the length of the upcoming

11In theory a single pin could fulfil both TIP and TOP functions.

83

message in words.12 The maximum message length is 16*4 bytes. If the
second nibble is F, the receiving modules will wait for a special
termination byte. Depending on whether the network is normal low or
normal high, an address or header 0X00 or 0xff respectively should not be
used since these are equal to bus silence, and can account for devices
that got disconnected or failed at run time.

Three devices in the network broadcasting messages, that were also sent
to the laptop’s serial port. One of these devices is a prototype of the x28
board. The signals were monitored in a digital oscilloscope, and also
translated into MIDI to provide a perceptible sense of rate.

In order to implement this networking protocol, a set of steps were
designed and followed. The design of implementation steps helped a
gradual implementation of the network in such a way that it was possible
to monitor with clarity all the critical aspects of the network, delimiting
the amount of possible errors to a range which is easy to manage. The
step one consists on getting a common bus to work; meaning every
device can read and write to and from the same cable. The challenge
with Rs232 devices is that they have separate RX and TX pins, which do
not necessarily work if they are connected together. Three Arduino
boards were connected to the same bus and programmed as to be able
to address each other individual node in the network by a hard coded
address, and that each one could respond with their own ID plus a string.
This is to prove that it is possible to use a hardware RX pin, which is
turned into a TX pin by software, and there can be communications
through that pin. It also allows to chose the best pin impedance mode for
the listening state so that it does not interfere with other devices that
might be writing.

The second step consists on achieving automatic address assignation.
The Arduino boards are tied with the TI and TO connections, as expressed
in Fig. 33. One single Arduino board was set to reflect in the serial all the
signals that happen in the common bus. After the automatic address
assignation, the Arduino board that is connected to the serial should be
able to address individually each other board as in the previous step.

The third step of development is automatic token: the Arduino boards
should start their activity without input from the node that is connected
to the serial. The message length is fixed. The activity can be seen in the
serial output of one of the nodes.

At the fourth step of development, there is a basic working TBHN. This
steps consists in allowing node to be added or removed without
compromising the network. In this case, the effect was granted

12A word in computer science is defined as four bytes.

84

automatically, because the continuity is given by the physical cable
between nodes, thus removing a node becomes a complete removal from
the network. After this steps many bugs emerged, related to which
specific state was the network when the device closed or started
communications. These bugs need individual addressing according to the
specific transition that causes them.

According to the relation of this development to the design of the
environment that will be described later, it was determined that TBHN
development not to be necessary, however interesting for other
purposes. The protocol at the stage that it was left allowed 43.5
messages of 8 bytes per second (the frequency of the TOP of one device
was 14.5 Hz, having three devices on the bus) with a payload is 6 bytes
per message. It was observed from the busy versus silent time in the
bus, that there is room for duplicating this message rate. Additionally, it
would be possible to raise the baud rate, allowing even higher data rates.
Given this measurements, the latency down the token chain is very low,
and up the token chain is around 10ms. There is a chance that an end of
line message could be implemented, intended to be sent by a node that
detects no following node. This end of line message would help the
master to react instantly without waiting a timeout. The testing also
suggested that the header byte should go before the origin byte and not
after as initially specified. This reduces the bandwidth usage, because a
module could refrain from sending a message by using a null header.
Otherwise the origin byte becomes redundant for an empty message.
This change of order theoretically would allow each node to host multiple
virtual nodes that could be addressed by the network individually. If the
following steps described at TBHN development repository guidelines, it
would become an interesting communication protocol with a distinctive
ability to perform slave to slave communications.13

To this point, the communication protocol available to use are direct
RS232 communication, polite serial, TBHN and point-to-point I2c. Despite
the efforts put in the testing of TBHN, it was concluded that common bus
networks are less suited for a modular environment than a point-to-point
network. The most important point is the inverse proportionality between
amount of connected modules and available bus time. There is also a
common factor among common bus networks of high strain on the
connected devices since they must constantly use processor time in
order to participate in the network. During the initiation of TBHN

13There was an experimental implementation of this type of network, whose
code and notes are detailed in the Token Bus Homogeneous Network
repository, available at:
https://github.com/autotel/TokenBusHomogeneousNetwork.

85

experimentation, there was an idea of using a global scope of signals
such as clock. The global scope obtains a bandwidth advantage from a
common bus because a message needs to be sent only once to all the
modules if it is global, while node to node messages have a disadvantage
of sharing the available bus time. The deprecation of a global scope that
was defined from the definition of environment (it took place at the same
time) also removed the advantage of a shared bus. Furthermore,
applying a point-to-point, bi-directional RS232 opens the possibility of
later using polite serial or other similar technique in case a greater
expansion of inputs is needed. The additional benefit of point-to-point
networks is that the current micro-controller being used, the
ATmega2560 possess 4 hardware full-duplex Rs232 ports, which makes
the implementation easier at the current stage.

Among the study of the virtual implementation of the environment and
the physical study of the device networking, a message type was
specified which would be flexible enough for modular expressions, but
also efficient in terms of bandwidth requirements. It is based on RS232 in
the sense that messages possess directionality. This message needs to
reflect one header byte which defines the role of this message among
the available roles in that input, and a dynamically defined amount of
following bytes which specify more information in detail, being the first
ones, the most important, in a way that an event-message can be
truncated to different extents, allowing messages to still work with
different degrees of data loss.

It was defined from the testing, that it is interesting to use negative
numbers for operations such as recording a subtraction into an operator,
or automating a negative transposition of a melody. A negative point,
however of a signed integers is their limited range. This is what caused
MIDI to possess a range from 0 to 127 instead of 255. For the
implementation of control messages in this environment, the number 0
represents the middle position of that parameter (instead of the
minimum, as it was defined in MIDI). Control change event-messages can
also be defined in higher resolution by using additional bytes to represent
decimal points. Numbers with negative value can also be described by
integers which are below 127. The conversion from unsigned integer to
integer thus becomes int = unsigned byte-127. This produces a range of
numbers which are asymmetric, where the maximum negative number is
-127 and the maximum positive number is 128. The number 128 thus
can be used to represent a transparent or undefined number, as to
express event-message values whose values needs be filled with other
default value.

86

4.5 Exploratory iteration in the
Virtual-Modular environment

Figure 34: Schematic representation of a virtual implementation of a modular
environment

The exploration of a virtual implementation of this modular environment
was motivated by technical factors. The first version of the Calculeitor
hardware was based on an Atmel Mega 328. The first attempts at
implementing the sequencer functionality in this chip demonstrated that
the hardware memory would not allow the intended composition
features, but most importantly, it posed challenges on how to
communicate with other devices in a modular way. Being a design
project, and not an engineering project, the facilitation of a design
process was prioritized. This is why this device was re-purposed as a
controller which would be used to access a modular environment that is
simulated in a javascript application, in a computer, as expressed in
Fig. 34. This allowed a faster evolution toward the definition of a
composition environment and gave place to a fast evolving, iterative

87

exploration of this environment.

To do this design process without harnessing the possibilities of
implementing it in the future, it was designed under a modular paradigm,
where each module must be strictly isolated from one another, except in
the cases where they have explicit connections, in which case these
modules can only connect through event-message objects, which are
representations of a message that can be sent via a serial. This limitation
proved being useful beyond the hardware compatibility, it caused the
interactions among modules to be clearer, and helped with the on-going
definition of global meanings for each message’s header.

The system was tested by doing test runs. There are four types of test
runs, the most simple being code debugging, where the environment is
run with the intention to make sure the system does not stop due to
programming mistakes. The other test runs consisted on testing the
environment with the intention of checking its playability. For each
change that is done to any module, the environment is launched to
assess whether the change grants the environment with a greater
affordance of divergency and a better musical outcome, also checking
what other outcomes become impossible once the change is
implemented. The third type of test run consists on performing with the
environment in public, to assess whether it is possible to lure an
audience into dancing and keep an interesting progression of the
patterns. It also proved useful to test the mental strain of using the
environment in the stressful context of the live stage. Finally, there were
test runs done with other users. These were done with people that had
some level of experience in making of music, preferable with advanced
production and programming of digital music, since its usage is not easily
learnt.

Debugging test runs are often part of the design process. Sometimes a
bug reveals that an imagined module or feature cannot exist, as it has
assumptions that are either illogical, or require a code which is too
complex. Complex code is not a problem in terms of being impossible to
do, but because a musical interface needs to be predictable, otherwise it
can present surprising behaviours in the performance that ultimately can
leave the performer out of control.

Playability test runs are the most important ones, since their observation
models most of the behaviour of the environment. It is important to note
that a playability test run provides subjective, qualitative results since
they are tests done by the researcher alone. However, the subjective
improvement of modules should give place to an environment which is
objectively divergent, since all the modules that are subjectively tested
need to share one same common language and the environment needs

88

to provide a reliable framework for these regardless of their
heterogeneous variety. A playability test run will put a special focus on
what it becomes possible, and what becomes impossible once a change
is introduced. For the context of the virtual implementation, there was
little focus on providing an easy learning curve since this environment
does not aim at user friendliness, but at enhancement of music as a
divergent activity. However, it was considered important that access to
changes were fast enough to facilitate a fluid and varied performance.

Throughout the environment development process, a small number of
user tests took place. Same as the playability tests, a user test also
provides subjective outcomes, and the value of these tests were the
unexpected insights that another subjectivity would provide. These tests
were not frequent because the environment being difficult to understand,
required an expert subject and a long time of instruction. Since the focus
of this development was on divergency, the interesting part of the test
would only start after the user acquired a certain familiarity with the
environment, and how to use it through a Calculeitor controller.

There is a tension between user interface and facilitation of divergence:
as seen in the case of the Korg Electribe, a friendlier interface
encompasses a limitation of possibilities in the same degree. In this
exploration, there was a rule that discriminates user interfaces that need
to be addressed from the ones that are not priority: the user interface
features that are intended to make the interface easier to learn or
understand would not be prioritized, unless they were clearly hindering
the performance. The user interface features that improved the feedback
of the environment’s current state and also the features that allow more
fluid changes are considered important, however, because these boost
the fluidity while improvising music with the interface. Having developed
a specification of the environment, products with a friendlier interface
can be created afterwards.

One of the most important limitations of current music composition tools
that motivated this work was the impossibility to modulate melodies into
different scales, chords or transpositions in the real-time. This idea was
also explored with the modular mono-sequencers. The most important
module for on-going composition, is a sequencer. The sequencer would
need a clock, and a preset-kit module in order to create drum patterns in
a fluid manner. Finally, to apply sequences to melodies while answering
to the idea of pattern modulation, a harmonizer module was created.
This module allows transformations on an event-message to respond to
musical scales. In playability and live performance tests, this set of
modules already provided an interesting environment to improvise
music, despite that the modifications to the sequence were slow and
difficult to produce.

89

One of the challenging aspects to decide consisted on the granularity of
the message design. In the very first implementation of this
environment, each message had an attached output destination. In a
single sequence, each message could be destined to any other module.
This logic was changed to messages which had no output specified, but
are sent consistently to every output of the module. Although the older
messages which specified a destination seemed to open some
possibilities, it posed more important limitations: in the musical
performances that tested this logic, there was the constant issue where
re-routing a message path through modules involved several steps. For
example, if a sequenced message was being sent to a preset-kit, and the
intention was to re-route it to a harmonizer it would involve the re-
sequencing of each step in the sequence to change the route, whereas
by using messages of unspecified destination, a single step of re-routing
the module is enough. However, each module having distinct registered
outputs, could potentially route messages based on the output number,
in case a module required. This same distinction will still be present in
any potential hardware implementation of the environment.

Another important change regarding the mechanics of the environment,
derived into the creation of the backward-propagation concept. This
concept derives from the live recording style that is present in most
digital sequencers; this consists on the ability to record any pattern
which is played gesturally into the device’s sequencer by pressing only
one button. The modular composition environment, being modular,
posed a challenge on how to capture these live performed patterns from
any module into any other module. The need to play a pattern by hand in
real-time is of evident importance, since this composition method is the
most fluid, and ultimately most intuitive because of its similarity to
gesture-based instrument designs. The challenge lies in that modules
which produced output such as a preset-kit or a harmonizer are
independent from modules that can record patterns such as a sequencer.
A traditional sequencing tool has the advantage that recording can be a
dedicated procedure; but in a modular environment this is not possible
because not recording module nor the performance module needs to
assume tailored procedures one from another, specially because a
recording module needs to serve the function of a performing module in
some circumstances, thus allowing to re-purpose the elements.

To create a generic method of casting events from one module to
another, a specification was needed. The specification is meant to allow
any module to record into any other module, or not cause problems if the
receiving module did not have such functionality. For this implementation
there were two potential candidates: either the recording module could
capture the output of any other module, or the performing module could
record its output into any other module. The first approach had two logic

90

problems: first, in order to capture a live performance into a recording
module, the user would need to access the recording module, which does
not result in a fluid interaction pattern.14 Second, this method is the same
as in the current MIDI sequencers which have record function. By using
input recording, it is not possible to discern notes that are only meant to
be played from the ones that are meant to be recorded, leading to the
impossibility of having a module to process multiple streams of events
while recording only one of them. This problem seems specific, but for
instance, in groove-boxes such as Maschine or Electribe, it is not possible
to have them sonifying MIDI events and record real-time events at the
same time, because their recording function also enables recording of
their internal MIDI input stream.

The second approach of having the performing module to record into
another module also posed a challenge: it implies the addition of another
feature to the environment which consist of a parallel network of
recording connections among modules. In order to cast a recording from
a preset-kit to a sequencer, for example, a recording output could be set
from the preset-kit with the sequencer as destination. This idea was
tested by using a special function header that indicates that the role of
the incoming message is to be recorded instead of performed, and
creating functions on each module that would emit event-messages to
the modules that are their inputs, henceforth each module becomes
capable of recording events into any other module. In case the
destination module does not have the capacity to record, this module can
either pass the recording message to its inputs, or discard the recording
messages.

A user test run done with an expert in Ableton and live performance
using Push inspired the creation of a more fluid and easier to understand
interfaces to trigger recording. For instance, the direct access to input
recording in the buttons on the bottom were inspired by the experience
of this person using the environment; but most importantly the recording
protocol acquired its concept of being a ‘backward’ feature when he was
overwhelmed by being able to record to any other module in the
environment. This test led to limit the possible recording inputs to only
the modules that were actually connected to the module in question (see
Fig. 35). This backward-propagation, however, remains as a user
interface improvement that is specific to the Virtual-Modular
environment. In a physical implementation of this environment, however,
the recording network could remain as a parallel network that allows the
casting of events from any module into any other module.

14This interaction pattern would consist of switching the view into other
module and then set it to record, then go back to the original module and

91

Figure 35: Backward propagation among modules

One interesting thing to note about the directionality of the
communications is that, although in this Virtual-Modular implementation
each message has one forward component for the obvious
communications and one backward component for recording, in a
hardware context, these constrains could be omitted, allowing each
module to have several inputs and outputs; each for a different purpose,
in a way similar to how modular synthesizers do. In a hardware version of
this implementation it will be possible to see different inputs, and
outputs, each one with a different label, while other more conventional
modules may offer a connectivity similar to the one of Virtual-Modular.

Some other changes and features in this interface were inspired by
already existing performance tools, apart from the ones already
described. In the case of Maschine, for example, the arpeggiator feature
was a major motivation to implement a performing arpeggiator, which
translated into the creation of the narp module. Also the ability to bounce
an output into a track for further manipulation incited the idea of creating
a bouncer module, which allows the recording of a modified sequence
into sequencer, in a fashion similar to live bouncing.

Ableton push has given some hints about how to make a better
harmonizer module, and as mentioned before, about how to do live
recording. This device offers a scale mode that still allows the use of the
non-scale notes while in the mode, giving the role to the scale of being
just a modification of the user interface. “In Chromatic Mode, the pad
grid contains all notes. Notes that are in the key are lit, while notes that
are not in the key are unlit.” (“Ableton Manual: Using Push” 2018). The
amount of buttons also allow for an effective melodic sequencing of
events, which is not practical in 16 pads matrix. The disadvantage of this,
is that the button sizes are not the best for drum performances. One hint
that was applied to the current harmonizer module was the two different
views: one in which each semitone uses the space of a square, and other

92

where each square occupies a diatonic grade, having each pad coloured
according to its harmonic relation to other notes.

A point that needs attention, regarding to the use of clocks in a bus, is
the possible delays in any chain where there is more than one clock-
bound module. As it was described in the initial experience with
composite elements, the response of modules to clock events can
become inconsistent according to the order of execution of the signals.
As an example, if a sequencer is sending notes to an arpeggiator, the
first note to be triggered may happen in the same clock tick if the
sequencer is processed before the arpeggiator, whereas it would happen
in the next tick in the other case. This usage case is illustrated in Fig. 36
The best solution, as studied there, is to leave the natural behaviour of
the delay since other solutions can behave in less predictable ways.

Figure 36: Patch of inconsistent behaviour

Some strategies, however could be applied in the hardware
implementations of this environment as to make the behaviour more
intuitive. One suggestion is to use chained events, meaning that
generated note events could be attached to a certain clock event,
allowing a clock-bound module to associate events that are meant to be
simultaneous. This chaining could either be done by the use of a header,
or making the association if the time interval between events is less than
a threshold time value.

Novation circuit has motivated many future ideas for this environment

93

which to the date have not been programmed into, yet, their
implementation is clear and straightforward. For example, a method to
clear events from the perspective of the performing module, as a
backward-propagation procedure, implied a change in the backward-
propagation language by including a header that indicates the role of the
event in question: whether it records or it deletes. It also opens the
possibility to do other changes through this medium. For a fact, a module
can indicate recording state changes, which would allow a sequencer to
adjust its length to the recording time, for instance.

As a last remark, the implementation of a composition based integration
of micro-timed events such as triplets or swing has been suggested by
features found in the sequencers of Elektron, Novation Circuit and Squarp
Pyramid. This has motivated the development of modules such as multi
tape and piano roll, which to the date of this text, are unfinished.

4.6 Environment futures
In the development of the Virtual-Modular environment, it was set as a
rule that modules could only communicate to the extent of potentially
digital messages. This is why it is possible to think of physical
implementations for each module that was tested, knowing that it is
possible to implement those as stand-alone hardware. In a physical
implementation, opposed to its expression through a Calculeitor, could
offer dedicated user interfaces that make it easier to understand the
roles of each interface element and dedicated controls where it is
needed. These dedicated interfaces could function as stand-alone units,
or as rack mounted modules, as shown in Figs. 37, 38 in the cases where
the function is highly specific. As an additional idea, most of the
hardware implementation of these modules could take part in the virtual
implementation of the environment as well since it is trivial to include a
serial to USB interface in the same way Calculeitor does. It is also
interesting that these devices could be used as standard USB-MIDI
controllers or stand alone modules in case a user stops being interested
in modular composition.

There is an important additional advantage that hardware
implementation of the modules will have in comparison to the virtual
implementation. Given the nature of the controller in the Virtual-Modular
environment and its development history, the modules were thought as
single input and single output modules. This helped providing an easier
way to control the routing of the modules since this routing was done by
using the button-matrix interfaces. One first insight that gave birth to the

94

idea of multiple output and input modules was by the realization that a
more complex module, formed of molecular elements can have one
potential input per molecule that forms it. Additionally, the realization of
the recording network, in the context of a physical implementation
concretized the need of more than one input per module.

95

Figure 37: Concept rendering of a composition rack

96

Figure 38: Concept rendering of composition rack modules

97

The physical version of a module that can most easily fit into the
calculeitor interface style is the sequencer. As demonstrated by the
Synthstrom’s Deluge (“Deluge” 2018), an interface with more matrix
buttons affords a friendlier interaction, specially for non-quantized
rhythmic features, and the composition of melodies that need to
represent note lengths. Such interface could have a similar morphology
to the one represented in Fig. 39.

Figure 39: Concept rendering of an extended sequencing module

A module that would improve significantly from a hardware
implementation is a harmonizer, mainly because a horizontal distribution
of the tonal grades is more intuitive than a matrix distribution. A
harmonizer module could have back-lit keys similar to a keyboard, but
without black keys, since these are dynamic. Another approach to a
harmonizer’s interface is an isomorphic, hexagonal keys keyboard. The
linear keyboard interface would make of the interface an intersection
between a keyboard and a guitar fret, which suggests a form factor
which can be placed on top of a desk as well as held like guitar.
Additionally, a keyboard interface could afford a mode where each one of
the keys being pressed are triggered by using strum controllers,
producing a simplified version of a guitar interface. These user interface

98

elements together would appear in an object as displayed in Fig. 40

Figure 40: Concept rendering of a dedicated harmonizer and keyboard module

There are usually two stances that people may have in relation to the use
of an environment: the dogmatic and the pragmatic, both of which need
to take place during the development of a new creative environment. In
the ambit of Euro-rack there are many musicians who take a dogmatic
stance where they forbid the use of any digital method, following a
dogma of the analogue. Opposed to this, the pragmatic approach takes
each different ambit as an opportunity and allows itself to switch
between different working environment however it is more convenient or
inspiring. To develop a creation environment that intends to stand on its
own, a dogmatic stage is necessary since the self sufficiency is part of
the assessment criteria during the development. The earliest concrete
musicians, or the earliest synthesists would work exclusively with their
newly discovered expressive mediums as if they were the only mean to
possibly create music. This allowed the creators to explore the limits and
expressive possibilities of their techniques. For a technique to become an
integral part of a music system, however, it needs to integrate with other
performance paradigms that are seemingly contradictory, but allow them
to take part in the greater context. Current electronic music making
combines very often the techniques of the concrete music with the ones
of the synthesists. Sometimes with the techniques of classical music. The
following stages of this project should also involve entering in the area
where it takes part with a greater musical composition context, by using
different concepts than improvisation, modularity and discrete messages.

Musicians who do not intend to perform with exclusively improvised
music could take advantage of the flexibility of the environment to
mutate their prepared tracks on stage to greater extents. In this case a
musician needs the possibility to prepare patterns that are tied to a set of
sounds. This ensures the musician that a certain musical piece can be
reproduced on stage, ensuring it will sound the same way it did on their
studio. This can currently only be done if the musician has an
outstanding memory to recall exactly how to configure the environment
with a given synthesizer to reproduce what he intended. This context

99

suggests that the environment would benefit from the ability to store and
recall patterns; which is possible by providing any mean of memory recall
to the hardware and to the virtual implementation of the environment.
This also suggests that certain modules in this environment will benefit of
integrating sequencing and synthesis in the same way any drum
machine or groove-boxes do, producing a closer relation between
sequence and synthesis.

In the Virtual-Modular implementation environment, the preset-kits work
as a translation from a simple event-message, to one event-message
that has enough information to become MIDI. In the speculated module
that integrates the function of a preset-kit, sampling could already
integrated in the interface, as conceptualized in Fig. 41. It is
recommended for a synthesizer-provided hardware module to define a
set of filter-defined triggers mapped to a set of synthesizer related
triggers. For instance, a sampler could define 16 event-messages of
consecutive numbers, and have those mapped to 16 different samples;
or a lead synthesizer could map consecutive event-message numbers as
notes in a similar way to MIDI. Additionally, the synth could define
additional triggers to change sound parameters in a way analogue to
MIDI control change messages.

Figure 41: Concept rendering of a sampling-preset-kit module

100

To give a greater scope of use to one device, it would be advantageous to
integrate a built-in sequencer so that the device can also run without the
aid of any other module. For such device to be integrated in the
environment, there is an obvious requirement to have inputs and outputs
of event-messages. The question raises on how to integrate the
intervention of other modules into a device that already has an attached
sequencer. For this, the module needs also to be able to ignore its own
sequencer input, and instead route this sequencer into an event-
message output, so that a module can be side-chained between the
sequencer and the sound module. Therefore, an integrated sound and
sequencing unit must also permit the same functionality than the two
units could present if they were separate.

Deejaying devices carry a big vernacular load, hence a modular
environment approach to deejaying can only provide with means to
produce a similar effect and workflow as the one of deejaying, but not
offer a meaningful improvement as a device for deejay culture.
Presentation of pre-recorded tracks brings the value to more popular
audiences of providing recognizable songs or patterns, which for the
broader audiences is crucial. The modular environment could add to live-
remixing, the benefit of complex patterns of beat slicing, and jumping
around a song that goes beyond a mere loop lock. For instance, a track
sampling device can offer the possibility of completely re-arranging a
track according to an emerging sequence, that allows modifying an on-
going, recognizable song into a new one that only shares the timbral
characteristics with the first. This possibility could lead to a hybrid
between live composition and Deejaying.

101

Figure 42: Concept rendering of a loop-oriented sound module in the spirit of
the modular composition environment

Being both serial based protocols, it is easy to understand that the
modular environment protocol can be translated into MIDI. The event-
message function header is translated into the first nibble of the MIDI
header byte; and all the rest of the transformations are only
recommendations: to use the event-message’s third number as the MIDI
channel, and the second as the MIDI second byte (note or CC parameter).
This changing of places is graphically represented in Fig. 43. The event-
message’s fourth byte is recommended as the MIDI third byte, which
accounts for velocity or CC value. This is because event-messages are
not required to carry velocity. The need to express a three-bytes midi
message in four bytes in the modular environment accounts for the need
of these message to be purpose-agnostic, meaning that a message
whose functional parts are separated in bytes are easier to re-purpose in
a modular patch than MIDI messages, which use the header byte for two
purposes. For more complex modules such as sequencers or sound
modules, midi input and outputs could be integrated in the unit. A
dedicated conversion module could have an interface similar to the one
rendered in Fig. 44.

102

Figure 43: Schematic representation of the conversion from modular event-
messages to MIDI messages

Another obvious translation from the environment’s event-messages
would be to control voltages, to facilitate integration with modular
synthesizers. This is the main reason why for the modular connectors of
this environment is recommended to use a different connectors than 3.5
millimetre jacks. This reduces the risk of confusion between two signal
types (digital and analogue). An event-message to analogue converter
could require additional mapping settings, since the requirements for
patching may vary, and a good design approach would be to implement
three different mappings that can be switched with a single knob or
switch, as appears in Fig. 44. One example of such mapping could be a
MIDI-like note on and off scheme, where the second number selects the
destination plug, and the third or fourth bytes define the voltage. Another

103

example could be mapping the third number (which mapped to MIDI
would translate into channel) to select the physical cable, while the
second number defines the voltage level.

Figure 44: Two concept rendering of rack conversion modules

The Korg Kaoss Pad 2 served as an inspiration to consider a module
which produces control signals. In one hand, serial based protocols are
prone to overflow, as it will often happen to a MIDI stream when a
detailed control messages are sent. However, such a device could
produce lower serial signal rates to reduce the control signals rate, while
having fully analogue output voltages sending control voltages at a
higher sample rate. This can provide an interface between a quantized
environment with the other continuous value environments. In this way,
an infrequent digital signal, can trigger another high-rate continuous
signal, thus producing a bandwidth efficient approach to translate

104

parameter change signals into analogue signals. This module could also
integrate its own effects processor, just like the one of the Kaoss Pad, but
with the ability to externally drive the effect parameters, and with more
focus on looping these automations.

Figure 45: Concept rendering of a module that makes reference to Korg’s Kaoss
Pad

A signal merger and splitter can be simple device. A serial signal can be
sent to many devices as long as none of them draw the voltage down.
For this, the splitter could ensure the levels of the signal by using
discrete components. The more complex operation of a merger/splitter
device is to merge two incoming signals. In this case, all the incoming
signals need to be stored in a buffer, and sent to the output one after
another, starting by the oldest. The merger/splitter contains two rows of
plugs; the first row being inputs, all get merged into a single stream
which is cast directly to all the connectors of the second row. The
resulting concept of module would look similar to the representation
present in Fig. 46. If the user needs only to split a signal in two, a simpler
device could be used where the cables are merely connected without
active components. This would allow a signal to go through two different
paths forward in the patch.

105

Figure 46: Renderings of devices with highly specific functionalities

106

107

5 Evaluation &
discussion

This chapter contains three different assessments
of the success of the modular environment in
question. The first section evaluates the
effectiveness of the modular environment in real
parties where it was used. The second section
describes some examples of different musical
systems that can be built with the environment, as
a measure to assess the effective divergency in the
layer of musical systems. Finally, a comparative
assessment is done in order to describe the
divergency of the modular environment in
comparison to other techniques of performing live
conventional electronic music.

108

5.1 Experiences performing with
Virtual-Modular
During the development process of the Virtual-Modular environment,
there were many opportunities to test the concept and its current state
of development in its intended field: a dance party. These are the best
opportunities to test the highest level effects of the composition
environment: the music in a social context. The performances helped
drawing conclusions of its effectiveness at different development stages.

5.1.1 Fukuoka-shi, Japan

For this performance the Virtual-Modular environment was at the earliest
state where it could be used to perform live. In this performance it was
realized that the environment’s interaction patterns needed to add a
focus on fluidity, by offering default behaviours, since the time it took to
configure each event and pattern was long, and the musical outcome
came out very repetitive. In other words, it is not enough that an
interface allows to do a certain operation, it is also necessary for such
operations to execute fast. Thankfully, there was a drum track being
sequenced in a Korg Electribe, which reduced the strain on the
composition interface. For the most part, the melodic content was being
generated in the interface by heavily relying in emerging polyrhythmic
features, while a conventional drum pattern was being generated by the
Electribe synthesizer.

5.1.2 Ääniaalto, Helsinki, Finland

Ääniaalto is a yearly festival of sound art and performance, which is a
perfect opportunity to show projects that propose something new such as
this one. At the time of the application to the event, the Virtual-Modular
environment was very advanced in the version 2, having performed
previously in Kyushu with a version 1 of this modular composition
environment.

The visual feedback that was available in the performance given at
Kyushu was no longer available because it was designed to work with an

109

older version of the environment’s prototype. After a small demonstration
of the prototype in thesis seminar course, it became clear that the
Calculeitor’s interface did not give any clue about the aspect of
modularity present in the tool, hence it was decided to adapt the visual
representation of the environment to work with the newer version, so
that people could understand and visualize the musical operations.

The visuals used in Ääniaalto were based on the ones prepared already in
Kyushu, but this time, an additional layer of information was added for
better clarity: a layer that draws a different representation for each
module type that would take instance in the modular environment. The
presence and connections of the modules were the same as previously,
using a D3 (Bostock 2017) force-directed graph, but a layer of a Konva
canvas drawing plug-in (“Documentation | Konva - JavaScript 2d Canvas
Library” 2018) was superimposed, allowing more easy addition of texts
and graphics that are unique to each module. A protocol of
communication between the Virtual-Modular environment had to be
devised, so that the graphical interface could account for each module,
its type and its connections to other modules. The graphic interface also
represented the messages the modules would exchange, and the lengths
in the case of the arpeggiators and sequencers.

During the performance, the control of the environment was lost, causing
the performance to end prematurely, due to an unexpected factor. The
problems that caused this failure, were more related to psychological
factors than to technical issues. Despite that this environment has been
used without problems in laboratory conditions; with the pressure of an
audience, it became difficult to find a correct strategy to escape from an
error. The initial intention was to produce a scheme of muting the drum
pattern to do a melodic change and then bring the drums back,
producing a spontaneous change. The preset-kits were set to mute with
this objective in mind. To produce a fast melodic change, an arpeggiator
was created at which point the sequencer that was responsible of the
drums, was deleted unintendedly. After re-creating the sequencer as fast
as possible, the transcurring time increased the mental pressure. When
the drums were unmuted, there would be no resulting sounds, perhaps
because of a missing connection or a wrong setting in the synthesizer. At
that point, the pressure was such that the performer decided to give up.
In many performances with audience, this performer has faced problems
such as computer shutdown or software failure; in all these cases it was
possible to exit the problem state easily by disconnecting the affected
device and using another device instead, as backup. What is interesting
of this emotional failure, is its inescapability: despite that any technical
difficulty could have been addressed simply by using the backup
synthesizers, when the emotional state of a performer fails, there is
nothing they could use as backup of their own mind.

110

The burden of the interface in the failure hovers over this experience: the
insufficient information in the interface was clearly one of the factors that
caused this failure, but also the lack of confidence was important. For
instance, with a much simpler composition system such as Maschine, it
can take more than a year of practice to attain the level of confidence
where it is possible to figure out alternative solutions when there is a
noticeable problem in the sound. To get familiar with the more complex
modular environment, at least the same amount of time would be
expected. An additional factor that might have affected the mistakes in
the performance, are the many changes that have been applied to the
user interface, which caused the mode of operation to be constantly
changing.

This problem, thus highlights the need of focused practice, but also
highlights the importance of finishing the development of the hardware
version of this interface. In the current Virtual-Modular environment, a
module can be hidden when it is not focused in any of the controller
hardwares. As a consequence, events can happen without showing
visible evidence in the user interface. In contrast, in the hardware
implementation of the modular environment, there would be a one-to-
one relation between hardwares and module instances: each physical
unit not only represents, but is one module; meaning that less
information can be hidden from the user.

5.1.3 Calculeitor party

The 4th May a party was organized exclusively to test the Virtual-Modular
environment. Another intention of the party was to provide additional
social networking opportunities as to improve the chances to build
product out of this thesis project. The party took place in Aalto’s Kallio
Stage in Helsinki, and two other participants were invited to play dance
music to offer a more varied set of music and set the desired framing to
the party. After the realization of this event, a short feedback interview
form was handed to the participants, and the written responses were
collected.

Feedback form Questions:

• Your name (or anonymous)
• In what ways the music performance was changing, and in

what ways was it constant? How does it compare to other
electronic music performances you have seen?

• Why did you decide to come?
• What were your expectations, how did they compare to the

actual event?

111

• What can you tell about how the musical instrument is used to
make music? How did you know/realize that?

• Any other comments

The evaluated success of the party is ambivalent. Despite the most
important aspects of the party took place, namely, the presence of
audience and that the music during most part of the performance was
improvised using the Virtual-Modular environment. One of the aspects
that were not achieved well, is that participants did not dance beyond
subtle body gestures. One of the participants of the audience, Camilo,
who had knowledge about organizing events commented about a lack of
bass in the sound (Sánchez Carranco 2018). Another aspect that affected
the framing of the event was the presence of chairs. It was presumed
that some other important aspects were hindered by characteristics of
the space where the party took place. In one of the feedback responses,
it was mentioned that it was hard to know what to do during the party
because of the contradicting presence of dance music, and chairs in the
space.

Despite these drawbacks, the party allowed the audience to get fully
engaged with the ongoing music performance, and as a result it was still
possible to assess the interaction between the created music and the
audience. Some questions of the feedback form revealed some
interesting perceptions from the participants. For instance, it came clear
that the music performed is perceived as different from the usual,
although still being conventional. It was mentioned by a participant that
the music had both: largely repeated patterns and surprising changes as
well. These observations account for the fluidity and originality of the
performance.

The Virtual-Modular environment could offer an approach to recover the
performance relatedness with the audience in electronic music. A
common situation in electronic music performances is the unawareness
from the audience about how the music is being made. This happens
because, opposed to mechanical instruments, electronic music
instruments have non-obvious relations between interaction and sound.
This is considered an issue because it reduces the interaction between
performer and audience; as pointed out by one feedback response where
the person thought that there were prepared preset patterns. By the
question “what could you deduce how the instrument is used to make
music” it became clear that there is no clarity on how the music is made
but the development of visuals is a possible development path that could
strengthen this relatedness. This idea became apparent from mentions in
the feedback form as well as in conversations about the visuals. There
was an active involvement trying to infer the relation between the visuals

112

and the music, and if they represented the state of the environment in
greater detail, it would provide the audience with an intuitive
understanding of the inner world of the performance.

5.1.4 Kaiku Pheromondo

After the Calculeitor party, an invitation was received to play at a party
named Pheromondo, in Kaiku. Being two weeks after the Calculeitor party
and with the feedback of some of the assistance in the audience, it was
possible to improve the response of the music to the social group.

The Pheromondo granted better chances than the Calculeitor party to
assess the potential of the modular environment. There were the
advantages of a longer time, and a party environment. Additionally, there
were two hours to play, which provided enough time for the performer to
calm down and observe the audience’s response to the musical changes.
To a greater extent, it was possible to model musical changes according
to the observed reactions of the audience, and replicate the successful
modulations at different points during the performance. Not having
access to request the audience to fill a survey, the success of this
performance was only reflected by the constant dancing, the involved
response from the audience to the musical changes, and the positive
impressions verbally manifested during and after the performance by
people that were not aware of this project.

5.2 Systems exploration
As a way to evaluate the flexibility and originality possibilities that the
Virtual-Modular environment affords, this section describes some of the
meaningful musical systems that can be built in the environment, and
used in a performance.

5.2.1 Introducing a drum kit

One sequence can be used to play any set of sounds. If a sequence was
originally intended to play a certain drum kit, its output can be routed to
a different drum kit. This adds some variety to the patterns without
requiring to program new patterns.

To switch into a set of sounds without making a disruptive change in the
sound, the output of the sequencer can be switched to a preset-kit that

113

has all its sounds on mute. After the switch, the preset-kit can be taken
off its mute, sound by sound. Depending on what synthesizer is being
used to produce the sounds, it is also possible to introduce the new
sound by fading-in the new sounds gradually. The same can be done for
melodies. By interposing a preset-kit between a sequencer that contains
a melody and its output, it is possible to mute all the grades of the
melody, and gradually unmute them.

5.2.2 Polymeter

The modular environment can easily form polymetries, since the
sequence lengths need not to be interlocked. An easy method is to
program a single note on a narp and change the playback rate while it is
running. This produces an interesting rhythm that jumps from polymeter
to normal, or to off-beat patterns. It can also be done by using
arpeggiators, when the amount of arpeggiated notes are not multiple of
the other sequences. Additionally, two sequencers with different lengths
can produce emergent polymeters. This technique is broadly used in
electronic music either by using a polymeter of 3 against 4, or by using a
beat synchronized delay with a delay time of 3 beats. It was observed
that polymeters of 5 or 7 against 4 are also interesting and easy to listen.

As an addition to the described polimetric system, it is possible to attach
an additional sequencer which re-starts one of the two sequencers,
making these to come in synch every certain number of steps. This
technique makes the musical patterns easier to understand rhythmically.
To produce this feature, an additional sequencer can be added which,
connected to the out-of-meter sequencer, sends jump signals with an
interval that matches the main metric. To exemplify, let us think of a
composition based on 4/4 meter, with a second sequencer which runs a
sequence of length 3. In this case, both sequencers will produce a cycle
of length 12 (the sequence repeats every 12 steps). In case of techno or
house music, a length 12 is not highly expected. Many of these tracks
produce a forced reset15 of this polyrhytm at step intervals which are
multiples of 8 (most commonly 16 or 32). To achieve this reset, a
sequencer is added and connected to the secondary sequencer, and a
trigger on is programmed to trigger every 16 steps, with a number 0.
This trigger on event, effectively causes the secondary sequencer to
jump into step 0 every 16 steps, thus producing the desired polyrhythm
reset.

15Meaning that the secondary sequence step is set to 0 regardless of its

114

5.2.3 Held note

Many MIDI synthesizers have what is called a MIDI panic command. The
phenomenon related to this feature can be used in the environment
purposefully. The MIDI panic command shuts off all the notes that were
left sounding indefinitely. These notes are called hanging notes. Using
digital signals to represent note events imply that either the system only
uses note on events (implying that the duration of a sound cannot be
expressed), that all the notes have an inherent duration, or to use note
on and note-off events. Because it is the simplest approach, the latter is
being used by MIDI, and was adopted in the Virtual-Modular environment
as well. One example of using a hanging note purposefully, is to leave a
hanging note on an arpeggiator, as exemplified in Fig. 47. It can be
achieved by first adding a source (e.g., a sequencer) of note on events to
the arpeggiator (1), and disconnecting that source after the note on, and
before it emits the note-off (2). This causes the arpeggiator to lock in an
arpeggiated pattern, until its memory is cleared by the user. For hanging
note security, the MIDI output module keeps a list of the notes on, and it
is possible to send all the matching MIDI notes-off from the list.

Figure 47: How to produce a held note in the Virtual-Modular environment

5.2.4 Skip-jump sequencer

The sequencers of the Virtual-Modular environment are designed to jump
to different parts of the sequence when they receive a trigger on event.
This makes it meaningful to connect one sequencer to another, as
illustrated in Fig. 48 Alternatively, the sequencers can be set to stop
when they receive a trigger off. This allows for interesting patterns where
one sequencer can cause other sequencer to jump into different sections
of a pattern. This technique is similar to what is possible in the sample-

115

based technique called beat-slicing, except that in this case it is applied
to sequences. Two sequencers can trigger each other in a loop, to
produce unexpected generative patterns.

Figure 48: how to produce a skip-jump-sequencer system in the modular
environment

5.2.5 Patternized arpeggiator

By setting the clock source of an arpeggiator to something different than
a steady clock it is possible to do more interesting dynamic patterns. The
virtual version of the modular environment, by default creates a bus
which outputs to every other module. This is specifically intended to have
a clock being distributed by default to every module. To create the
patternized arpeggiator, first an arpeggiator is created, from which the
main bus is disconnected. This causes it to stop running. After
disconnecting the arpeggiator, an additional sequencer is added, having
its steps programmed with clock events instead of notes. The resulting
chain of modules is illustrated in Fig. 49. Now the arpeggiator advances
one step every time the sequencer triggers a clock event. This technique
replicates the type of arpeggiators that have a pattern options, such as
the pseudo-arpeggiator of the Electribe 2.

116

Figure 49: How to produce a patternized arpeggiator system in the modular
environment

5.2.6 Toggling note

Sometimes it is needed that certain notes in a sequence vary from one
repetition to another while having the rest of the sequence running
consistently. This can be set up by creating a secondary sequencer or
arpeggiator that contains all the variations of that event. Each of these
alternating notes can be triggered by the main sequencer, when it sends
a clock step. For this, the main sequencer needs to be connected to the
secondary sequencer through an operator which lets only clock signals to
pass. In a way, this pattern is similar to the patternized arpeggiator, with
the difference that in this case, the same sequencer is used to program
triggers and clock events. This system is illustrated in Fig. 50. This
system could also be potentially used to create Elektron style conditional
triggers (“Analog Four Manual” 2018, 36).

117

Figure 50: How to produce a toggling note system in the modular environment

5.2.7 Progressive melody

A progressive melody is similar to the toggling note in the sense of
having two sequences producing a longer melody by using operators as
an interface. In this case, the main sequencer is used to play a constant
melody, and a secondary sequencer that is running at a portion of the
first sequencer’s rate, causes the main sequence to transpose.

It is possible to apply this technique to an already running sequence,
without interrupting the melody. The indication of the Fig. 51 suggests
that one normal sequence could be playing through a harmonizer (1). To
this scheme an operator and an additional sequencer are added in
parallel, but not connected to the output (2). The operator is set to
operate the note number, for instance, with addition (3). The value of the
operator can be such that it does not produce a change (e.g. +0). The
main sequencer route is changed to pass through the operator (4). The
secondary, slow sequencer is connected to cast events into the operator
by using a bouncer (5). The operator becomes a note modulator which is
constantly changing, according to the programmed pattern in the
secondary sequencer (6). At this point a dynamic transposition is applied

118

to the main pattern. In the illustrated example, note that depending on
whether the transpose operations are caused after or before the
harmonizer, the transposition can be chromatic or diatonic, respectively.
Such type of patterns are common in blues, for example, where a melody
is repeated four times but in different transpositions of the pentatonic
scale.

Figure 51: How to produce a progressive melody system in the modular
environment

After producing the progressive melody construct, often connecting the
slow sequencer to the fast sequencer will produce interesting results,
because the slow sequencer will cause unexpected jumps in the fast
sequencer, causing an emergent new melody on the base of the first.
This same pattern can also be applied to the output of arpeggiators and
other similar modules, perhaps to generate complex harmonies whose
elements are all modulated by the same rules.

5.2.8 Sequenced pattern routings

The route-sequencer allows for many unusual composition alterations.
One of these is the possibility to apply transpositions or feedback delays

119

to a musical pattern variably depending on whether it is on its strong or
weak time. By the same means, it is also possible to subtract or silence
all events according to this rhythmic role simply by disabling the route on
the desired steps.

As a function of feedback for a delay module, it is possible to produce
generative patterns by feeding back some of the route-sequencer’s
output modules back to the delay. These modules between the route
sequencer could be such as, for example, an operator or a chord
generator, thus changing the composition of the pattern stream. A note-
sustain module can be interposed between the delay and the route
sequencer as an effective mean to limit the amount of events
(preventing an excessive amount of events).

A more usual application of this module, is to produce swing on any
composition. As it was specified that different effect routes could take
place depending on the rhythmic role of the event, events in a weak step
could be routed to a delay, thus producing an effect of swing. It is also
possible to produce less usual rhythmic artifacts, such as a swing where
only one per each four steps fall in the correct time.

5.2.9 Feedback loop

Alike other modular environments, it is possible to produce feedback
loops. This dictated the use of lazy queues instead of a call stack when it
came to the communication between modules. A lazy queue consists on
a list of tasks that need to be performed, which are processed in the
same order as the tasks were queued. While in the context of an event
stack, the causation of a feedback loop leads to a stack overflow error.16

In a lazy queue, however any amount of events can be added, with the
effect that a feedback loop may cause an ever-growing queue of events
to process.

The effect of producing a feedback loop of modules which are clock
bound, generates unexpected musical patterns, sometimes with very
long periodicity. Feedback loops comprised of non clock bound modules
produce an explosion of rapid events which create harsh noise and
glitches in whichever module is interpreting the control signals (e.g.,

16When a function calls another function, it is referred to as being stacked.
This is because the caller function is expecting the called function to return
(end) in order to proceed. If this stack gets too large, it causes a stack
overflow error. The stack limit is usually very high, hence stack overflows are
usually caused by procedurally stacked functions, specially in functions that

120

Pure-Data receiving MIDI). This difference is caused due to that clock-
bound modules expect clock signals to send outputs, while the not bound
modules propagate the signals as fast as possible.

Adding a feedback loop to a delay module can lead to interesting results.
Note, however that in this case is crucial to add some operation that
could remove events after a certain amount of repetitions; otherwise the
events accumulate fast and slow down the performance of the
environment. In this sense, it works the same way than any delay
module: if the feedback does not attenuate the signal, the noise
accumulates until distortion. A good way to do this, is to use two
operators in series between the feedback output’s and input: one that
subtracts from a number, and other that lets pass only events whose
number is larger than a certain amount. It is also possible to use other
modules such as a route sequencer, which would propagate the events
only at certain intervals. In the chain that modifies the delay’s feedback,
any module can be interposed, which can lead to different alterations to
a note which vary upon each repetition.

In addition to the performance patterns that were just described, many
additional ones could be built. Moreover, it is still possible to create new
modules that could open new possibilities in this respect. It is speculated
that either the physical or graphical implementation of this modular
environment would allow the creation of more complex musical systems:
the connections between modules, currently being selected and
visualized through the button matrix, are difficult to understand. Higher-
levels of complexity that would be trivial by means of visible modules
and cables.17 All this accounts for the broad divergency that this tool
offers: it is possible to generate many different musical systems, each of
which affords a spectrum of musical results. This provides two
dimensions of musical expression in the live stage: creation of systems
and creation of musical patterns. In addition, a third dimension of
divergency is added when considering that the author can code his own
modules in the context of preparation.

5.3 Comparative assessment
The initial question of this thesis was stated in the terms of how a
composition environment could afford more divergent improvisations of
conventional electronic music. In relation to this divergency, three

17Visible modules and cables can be achieved using a graphical user interface
for the Virtual-Modular environment, or by creating a physical version of the
environment.

121

metrics were described: fluidity, flexibility and originality. As it was
mentioned, these metrics were important in terms of how the tool affords
the expression of these three characteristics. According to these, it is
possible to assess the success of the created environment in comparison
to current music improvisation tools. To assess the value of the new
composition environment, a comparison can be made against other
current live composition tools of different natures.

5.3.1 Fluidity

The scope of fluidity on a live performance, more than having relation
with the amount of sounds produced, it has relation with the amount of
musical ideas. A live performance is most likely loop-based, and hence a
new musical idea is represented by changes to that loop where the
repetition of the same loop is considered as a permanence.

Referring back to the performances based on gestural mapping, it was
seen that improvisation is possible within parameters of body
coordination and agreement across musicians. This thesis project
included the development of a physical interface which offers means to
produce music from commonly used gestures. Modules such as the
harmonizer or preset-kit offer the common press-sound relation between
action and sound. The environment also offers more complex results to
the same simple gestural operations such as transforming tonality,
composition and rhythm in different ways. However limited the possible
gestural inputs in the Calculeitor controller that was devised, it is not
difficult to imagine the creation of devices that could capture more
complex gestures. A good guide to such development could be Imogen
Heap’s working prototype, which suggests the use of position, posture,
touch and gestures among many other gestural variables (Heap 2013). In
this sense, a very interesting new research question opens. It would be
about the exploration of composition procedures that gather body and
gestural variables, and attain musical meaning within the context of
modular composition. A symbiosis could be attained between the live
composition of musical systems and live performance using these
musical systems.

With regard to a deejay performance, from the point of view of an
unaware audience, many musical changes are present, since these are
integrated in the recording. This can convey a sense of fluidity. From the
point of view of the deejay, however, it is necessary to think in a different
abstraction than composition or scoring, since there are very constrained

122

possibilities to re-compose a pre-recorded track. Focusing on potential,18

there is only a limited amount of not performed variations to a pre-
recorded track such as applying a filter or jumping to a different point of
the song. There are also constrains on how to superimpose pre-recorded
tracks because of these are an already rich musical piece: both tracks
need to sound well together. In this sense, deejaying has an ambit of
improvisation which corresponds to the choice of layers, and application
of effects. It excludes the ambit of composition improvisation.

Performances with DAW based tools such as Maschine allow very fast
input of a composition since it can be played with precise pressure
sensitive pads. The possibilities to modify those sequences once
performed, however, are limited, unless they are modified using the
mouse and screen interface in the laptop. In the case of Ableton; there
are more modulation options and there are more interaction patterns
available to play, such as chord playing, chromatic, more arpeggio
patterns, more effects, and so on. Moreover, it is possible to apply
transformations to the composition stream using Max as a MIDI effect
(“Creating MIDI Effects” 2018; “MIDI Effect Tools” 2018). However, the
max patch itself cannot be modified using the physical interface but max
abstractions could be chained as midi effects. If each instantiation of
MAX in the Ableton context is counted as a module of this project’s
environment, it could be said that MAX within live, using Ableton push, is
a predecessor of this work. on the other hand, if each module in a MAX
instance accounts for one module of this thesis environment; the use of
Calculeitor largely improves performative fluidity. In both cases, however,
the physical implementation of the composition environment that was
speculated would improve the possibilities for a user to produce musical
contents fluently thanks to the presence of physical connections that
relate the different modules.

In relation to current live programming tools, programming generally
takes time, resulting on compositions which progress gradually. For
composition of conventional music, however, the best approach would be
to construct instruments that are performed on the live, and combine the
command-line programming interface with a dedicated controller to
produce faster, more abrupt changes. The concept of command line plus
dedicated controller could lead to interesting results. The Virtual-Modular
environment in combination with Calculeitor controller could be
developed to become (and in a looser sense it is) a programming
environment plus a controller performance tool. In its state of modular

18As it was explained in the introduction, potential can be described as how
many other musical compositions are not performed once a musical
composition has been chosen.

123

environment, however, still allows a fluid modification of the patch and in
performances it proved being able to generate many variations. Since
the interaction is expressed in multiple interaction nodes, more than one
change can be produced at the same time, whereas in programming,
only one thing can be written at each given time (it is possible, however,
to postpone many changes to one single moment, or to associate many
outcomes to one single variable). The possible implementation of
additional interfaces for the modular environment e.g., with better
playing pads, or mapping of other gestures could enhance fluidity while
keeping the current characteristics.

In terms of fluidity, consequently, the product of this project offers a
unique potential in terms of composition, because it affords to easily
produce or alter musical ideas during the performance.

5.3.2 Flexibility

Within one performance, deejaying performances can present many
variations but these tracks will come with their immutable
characteristics, as with any other track. To give more flexibility in
performances, Native instruments Traktor introduced the concept of
stems. It consists on the commercialization of musical recordings in
separate tracks, thus allowing deejays to manipulate the pieces further.
This comes along with their own software support for such type of tracks.
This practice could be considered similar to the use of Ableton clips in
live performances. These pre-recorded material, however, still possess
the constraints of a sample. In the scope of a single performance it is
possible to use enough variety of recorded material, so that nothing is
repeated throughout the performance. For an audience, there would be
an appreciation of musical flexibility (all the presented loops in the
performance are different) but the artist may be aware of the authoring
possibilities on their set. Additionally, parts of two performances of one
same artist may end being almost exactly the same, as it happens in
shows such as The prodigy, Daft Punk or Stephan Bodzin. In these cases,
the repetition across performances is intentional as to account for their
own tracks.

With modular synthesizer environments, theoretically anything can be
done, but, as explained earlier, some conventional composition features
are not trivial to achieve. Conventional music making in Euro-rack is
often characterized by this fact. Live coding environments such as Sonic-
pi sonic pi, being environments too, allow a very wide range of musical
outcomes, to the extent that is possible to make experimental music that
transgress the conventional composition abstractions. This variety can

124

only be achieved by adding custom programming abstractions, since
building more complex patterns via textual commands takes time. The
Virtual-Modular environment could be viewed in this sense as a set of
prepared abstractions which can be combined in different ways within an
environment, and modified through a physical interface.

While performing with DAW paradigm tools, it happens that despite the
patterns may be different, the alterations often end up being always the
same. One example of this, the difficulty to change the patterns on an
Electribe. In this case, the performances with Electribe are almost always
limited to switching among prepared patterns and alteration of timbral
characteristics of the sounds in the pattern. The same happens with the
more advanced interfaces such as Push or Maschine. The repetition of
modulations is less noticeable in these cases because there are more
available modulations and with a greater scope of pattern possibilities.
This may grant two applications of one same procedure to two different
patterns to sound like different alterations. One illustration of this is that
in Maschine it is possible to transpose any pattern one octave up or
down. Transposing a drum pattern results on the same pattern on a set of
sounds that are different but related to the original (playback rate was
doubled). The application of this same technique to two different drum
kits may not be noticed as the same modulation by a listener.

In the case of the current Virtual-Modular environment, it seems that
there still are boundaries with respect to the possible modulations.
Despite the modularity, live performance may still be limited by a three-
dimensions boundary comprised of the available modules, the available
procedures or parameters on each module, and the time it takes to set-
up an intended composition system. In this way the limitations are in
practice similar to the ones of DAW based environments, specially Push
(since it is the most complete DAW) but theoretically offering an
additional dimension which broadens the boundaries of improvisational
divergency. In practice this reveals that future works with the
environment are paramount to enrich the composition possibilities: user
interfaces that allow more fluid and clear interconnection among
modules will expand the possibilities in the composition systems layer.19

In the current state of the environment, it is not possible to store and
recall musical compositions. This feature is theoretically possible and
could provide an additional source of variation. By recalling patterns or
fragments of patterns, it would be possible to produce drastic
composition changes, similar to how it is possible by playing a new track
on a deejay deck.

In conclusion, the modular environment improves the potential for

19refer to Fig. 7.

125

flexibility within its own specific area. While prepared performances can
produce more abrupt musical changes by using playback, the modular
environment allows some abrupt changes by the transformation of
current musical material, however, without the need of any prepared
material. In this sense, therefore, the modular environment provides a
wider playground for flexible musical composition, since these
transformations can be chosen on the live performance instead of them
being determined beforehand in a preparation process. In addition to all
this, the speculated futures of this environment could provide with the
possibility of producing prepared abrupt changes by the combination of
the environment with sampling techniques.

5.3.3 Originality

The Virtual-Modular environment, in its current state, affords the
performance of an original composition, because in addition to the
composition freedom present in performance paradigms such as looping,
it offers an additional dimension which is composition of a musical
system. It can be argued that the Virtual-Modular environment offers a
set of procedures in the same way than any DAW based composition
paradigm. As it was discussed before in this work, however, it is possible
for musicians to prepare their own modules or tweak the behaviour of
existing modules to produce their own systems. In the case of the
speculated physical implementation of the environment, it will be
possible to make use of lower-level composition modules which can
account for a less constrained range of possible musical systems. In this
way musicians can attain their own signature musical modulations or
composition systems, and improvise new ones during a performance as
well.

Originality in deejaying has more than one aspect. In terms of the live
music production, it is very likely for a well informed audience to
recognize tracks across different performances. Against this, there is the
vast variety of tracks constantly being composed and published, which
deejays could resource to. Some artists compose their own tracks. As it
was discussed at the beginning, many deejays sought originality in their
deejay performances by modifying the recordings to further extents, by
removing the labels from records, or by looking to the most obscure
producers to pick up on their sets. This leads the deejay performance to
become original in a different degree to the performer than to the
audience. While a participant of the audience may perceive that she has
never listened to the tracks being played, the deejay is aware that these
come prepared beforehand. Originality in deejaying can also be attained
by using unique techniques and features. Carl Cox, for example has his

126

signature shout “oh yes, oh yes” (Cox and Beyer 2018). In addition, he is
very active in the tweaking the music flow by fast and intermittent fades
of volume, and cueing of tracks (Cox and Beyer 2018). Originality,
therefore, can be attained at deejaying in terms of original deejaying
techniques, but hardly in terms of composition. The product of this
thesis, in its current state however, cannot make use of musical tracks in
the same way as it is done in deejaying. In this sense, there is a whole
area of live production which is still unattainable, yet it is possible to
imagine concepts where a prepared track paradigm can be integrated
with the modular paradigm, as it was discussed before.

Other tools offer different extents of originality to a live performer. For
instance, a tool with very limited composition possibilities impose to a
greater degree an identity of the machine to the piece. One example of
this are the Teenage Engineering Pocket Operators. Some other
performance systems offer the authors a vast creative area. Examples of
this are Ableton or live coding environments like Tidal or Super Collider.
The performer can resource to prepared music-altering procedures. In
case of these being created by performers themselves, the prepared
modulation procedures could grant an aspect of musical identity to the
modulation algorithms with which their performances are provided.

For more limited tools such as Maschine, the aspect of originality is again
different experience for the audience than for the performer. In these
tools, alike almost all the other music making tools, it is possible to have
prepared sequences which, being exclusively created by the performer,
will appear as original to the audience. These performances may,
however, be similar one to another of the same performer in case he
resources to the same prepared patterns, across more than one different
live performance. In the case of the Virtual-Modular environment, it is
possible to prepare some musical systems beforehand, which in turn is a
composition environment that possess a field of possible musical
outcomes. The initial system, however, can be altered in the real time,
allowing to drift out from possibly known composition procedures.

The modular environment, therefore, offers the same affordance for
originality in terms of conventional music composition in the live stage
than DAW based or loop based tools. With this environment, however it is
possible to create completely new musical transformations which are not
possible with the other mentioned tools, because it is possible to
improvise the modulation systems in a way that is not possible by using
other tools. Furthermore, it is speculated that this affordance can be
enriched by integrating new modules, creating new user interfaces, or by
expanding the versatility of current modules.

127

128

6 Conclusion
Having created and evaluated the modular music
composition environment, the relevance of this
project in relation to the field is evaluated. In
addition, the conclusion reflects upon the different
processes of this work and their effects on its
result. This evaluation also leads to some
conclusions which reach beyond the scope of this
project, and hopefully can be insightful for future
design processes.

129

The modular environment, thus is not a good replacement of most of the
current tools for performance, because each performance technique has
different objectives in mind, which may not necessarily be divergency.
The environment rather has the potential to bring a way of
understanding live performance of electronic music. For example,
divergence is appreciated by the audience on how the live-ness of the
performance is sensed, otherwise a sampled performance already
presents a greater divergence. The environment, thus is an improvement
only where more creative freedom is intended in the ambit of
composition.

The fluidity comparison with Ableton considering the possible use of MAX
brings an interesting point of view to the idea of developing the
environment physically: parallel to how in Max and Pure-Data there are
control or digital signals versus DSP signals, the composition
environment could be considered like the missing digital side to modular
composition in order to turn modular synthesis into a more complete
environment, as MAX and Pure-Data are, with the added benefit of a
much better and multi-point interface. In this sense yet another new
research path is opened, this is, exploring the integration between
continuous and discrete abstractions of modular music composition. This
exploration would be possible both, by using software, or using hardware
modular synthesizers.

The composition environment could enhance the sense of live and
authorship. Be it using the virtual environment provided that a clear
representation is displayed by showing the on-going operations (in a way
analogous to the visible code in live programming) or by using the
physical implementation of the environment. The presence of a controller
whose feedback is shared between the performer and the audience shifts
the ritual of a laptop performance into a ritual of instrumental
performance. Thinking of the classical performances with mechanical
instruments, the awareness of performance from the audience is given
by the visibility of relation between the performer’s actions and the
musical results. In the same way, a visible manipulation of digital
composition devices could lead to an increased sense of live performance
in comparison to other live performance tools.

According to the comparison with other performance paradigms and
tools, the composition environment seems to still offer boundaries to
what is musically possible. In its current state of development, the
environment offers improvisation possibilities perhaps comparable to
using combinations of other tools. This is caused by the currently used

130

interface, which makes the construction of patches non intuitive and
limited. An improved interface would account better for the relation
between modules, and specially, provide a plurality of input and output
connectors. In such case, the versatility of the environment would
provide with a greater extent of composition possibilities, above any
current digital tool.

The initial insight that gave a starting point for this thesis was
understood intuitively, and there was some work to be done in order to
understand the exact description of the problem through different
processes. The initial inspiration was driven by a frustration while using
currently available live performance tools. Being aware of a subjective
frustration despite that these tools are technologically advanced and well
thought was intriguing and also problematic as how to define what a
better tool should be. The initial process of surveying all the other tools
available in the market and reviewing their manuals finally provided with
the needed insight, as described in the Musical devices and their
performance paradigms chapter. As said, these tools only offer musical
modulations when there are dedicated procedures to them. This briefly
defined fact was one of the many surprising revelation that emerged
from this project. This process of surveying also served to give a scope of
development, as it was realized that tools divergent music making
already existed, only that they were not oriented to conventional music
making. This further underlines the utility of surveying current alternative
approaches to a certain design problem, be there candidates for the
exact same problem, or to a problem which is similar.

The development steps to follow were fuzzy: after having defined a
project, there was only the idea of making a digital (discrete) modular
environment for music composition. In hindsight, the process that was
described here as Composite elements environments appears as an
arbitrary starting point. The idea of designing a modular environment has
many possible approaches, and at that point there was no knowledge
about available design approaches for this task. This arbitrary exploration
start point had the advantage of providing a view into the intricacies of
this design task without yet knowing the best approach. Thanks to this
process, a design approach emerged which finally allowed the design
process to take course from a less arbitrary starting point, as it was
described in the finding the primary elements of the environment
process, that was successful. It was crucial, for instance, that the
exploration with the Virtual-Modular environment considered discrete
modules which would communicate using an array of numbers. It is
interesting to note however, that the definitions derived from this
process were over-specified; meaning that later in the process it was
discovered that some different interpretations of the rules could be
acceptable (like for example having more than one input or more than

131

one output for complex modules).

It can be considered that from the perspective of designing
environments, the composite elements process was a learning process,
and the following processes were the application of that lesson. For
future environment design projects, provided that the initial information
is sufficient, it will be possible to start with the non-arbitrary approach of
buildification. This buildification approach may not be limited to design of
physical processes, but it may as well prove useful for other designs such
as social or economic processes. The downside of this approach is that it
requires knowledge at least of some of the possible systems that are
desired from the environment in question. The discovery of this
buildification process, was on its own a very valuable lesson to be applied
in the future, whenever a design process is related to systems theory.

The aforementioned process revealed that a step previous to the
definition of design specifications or methods could be a good addition to
the design process of complex products (such as an environment). This
additional step would consist of making a mock-up project only to
understand the complexities of the task in hand, as well as to reveal the
designer’s own intuitions in relation to the project. In more general
terms, it was learnt that the production of a short project can be part of
the process of understanding the problem. A production process,
consequently, may not be exclusive to the production phase of a project.

The design of the physical device had some clear limitations which could
have only been solved with more resources and time. As it was described
in reference to the design of Calculeitor hardware, an almost arbitrary
decision was taken to use a led-buttons matrix in a similar way to similar
devices such as Novation Circuit or Novation Launchpad. It would have
been as well possible to think about embodied interfaces, or a live coding
interface, probably leading to different environment concepts. As a
project that looks for new approaches to perform music, it would have
been interesting to explore the relation between a modular environment
and the physical user interaction beyond a controller. In this aspect, the
only user interface propositions were taken from the other projects that
were surveyed at the start. On one hand this simplification allowed a
more dedicated exploration in the environment aspect of the product,
since such hardware could be manufactured out of standard parts. On
the other hand a very valuable aspect of the live presence that these
interfaces could produce had to be left for future projects: a gestural
mapping interface that heightens the perceivable live-ness to a further
extent, as expressed in the Sound Gloves research, considering the
audience not as mere listeners, but also as another user of the musical
interface (Lai and Tahiroğlu 2012).

132

Regarding the design of the physical product, it is clear that this product
does not communicate clearly enough about its capabilities to an
unaware user and would not be a self-explanatory product. The design of
the physical product had to be limited to what could be helpful for the
development process of the environment. This is a clear consequence of
having started the process of designing the hardware before defining the
design approach. As it was demonstrated by the audience of Calculeitor
party, it is not possible to understand the composition elements of the
performance without the aid of an additional graphic representation. In
this sense, the design of the hardware was more than anything the
design of a development tool that allowed the virtual environment to be
used in the real context. It also helped determining what is realistic to
expect hardware as parts of a network. The exploration about the
networks design process had an important impact about what the
limitations on the virtual environment experimentation needed to be.
Without a clear knowledge of the hardware limitations, it would have
been difficult not to prototype environments virtually, which later would
be impossible to build as hardware.

The exploratory process with the Virtual-Modular composition
environment was one of the core components of the project, where all
the details about how modular performance could work, were tested. The
fact of being involved in the design of a user interface such as Calculeitor
naturally led to the intent of doing user testing. Some tests were
conducted with users, but this method further proved that this project
should not target making easier user interfaces, but is about the
development of a new method to perform live. The user testing became
unfruitful because it took too much time for the participants to learn how
to use the interface before being able to start with user interface testing.
This is because the Virtual-Modular environment is very different from
other composition tools, and it takes time to get acquainted with the idea
of discrete and modular composition. In addition to that, there was the
added difficulty that the patching of modules was not visible at all times,
and this required a highly developed acquaintance with the environment.
While it was possible to solve these issues by implementing a graphical
user interface that would reflect the environment more intuitively, the
focus was limited instead only to the divergent possibilities of the
environment. It is clear that users with enough interest can also learn to
use difficult instruments, but in order to generate this interest, the
instrument needs to offer unique expressive possibilities in the first
place. A useful aspect from the user testing, however, were the
additional observations and comments. As the tests were targeted to
electronic music tool users, each one had their own different views that
provided the exploration with a rich set of ideas to develop. These
insights now form part of this project in many different theoretical and

133

practical aspects of this project.

One interesting topic that might become of use to other environments
such as live programming, is the casting of notes between different
notation systems in a way parallel to casting of numbers in programming
languages. As expressed in the design of the harmonizer,20 there is not
only one approach to cast a chromatic note into a scale. These different
approaches could lead to ideas such as decimal points in a note (a
chromatic note numbered 1 counting from 0 can result into a C.05,
expressing a C# in a major scale). Such expression suggests the idea of
generating a set of musical data-types such as frequency, tone,
chromatic and diatonic major, and offering different ways to cast across
types. This is not an idea that might be of use in the case of the
composition environment, but it definitively is useful in the context of live
programming environments.

One of the most useful prototype testing methods during the process
were the live performances. As described, live performances revealed the
most important aspects of such development by setting it under the
intended environment: an expert user and a live dance social gathering.
While developing in lab conditions, it is easy to think of performance
patters that are highly complex and nuanced because these afford more
interesting possibilities. In context, the limits become clear about how
complicated the use of the environment can be before causing problems
to an expert user. The success metrics also are very clear: whether
people remain engaged with the music or not.

Another valuable lessons learned from the live performances is the major
role that emotional factors play. The first and most clear example was the
failure to rescue a stuck performance in Ääniaalto, where despite it was
technically possible to proceed, it became emotionally impossible.
Another, less clear example that occurred in performances which were
not listed in this thesis but were still based on the use of the Virtual-
Modular environment21 revealed the strong relationship between
audience and performer in the case of improvised performances. In two
cases where the performance was initiated with no audience, it was
realized that improvising music for nobody was surprisingly difficult. In
these same performances, when an audience gathered to listen and
dance, the flow of improvisation became easier and more effective. This

20Where a number can be expanded to a scale, providing one input number to
each diatonic note, opposed to rounding the number to the nearest diatonic
note, hence having possibly more than one input number on each output

21two underground electronic music parties, two performances in parties

134

last effect was not mentioned in the discussion because beside
demonstrating the profound impact of emotions in the performance, it
was not possible to discern whether this effect took place as
consequence of a real audience to performer relationship or a particular
personality trait of the performer. Additionally, the same effect was
observed when using other performance tools.

Together with the live performance testing, the environment tests
without audience were very predominant to the conception of new
modules. Without the pressure of an audience, it was possible to explore
into more complicated or experimental patterns which might not
necessarily result in conventionally musical results. This testing method
provided with the creation process of many different modules, when
amidst a performance, new modules were imagined that would be useful
in such context. All the modules apart from the initial ones (midi IO,
harmonizer sequencer, and preset-kit) were initially thought from these
experiences. One limitation of this method is the coupling of the user
interface to the characterization of modules. One example of this is how,
all the modules are thought as single input and single output modules
due to the way these can be patched through the Calculeitor interface.
Were these modules physical units, or would have these modules been
patched via a graphical user interface, the conceived new modules would
have had different characteristics, and the emerging composition
techniques would be different. The described drawback from this method
needs to be taken into account if this environment is translated into a
hardware implementation: the modules need not to be replicated in the
same way, since hardware interfaces will have different affordance than
the virtual one, which was taken into account in the environment future
section.

Testing without audience also served to improve the interfaces to achieve
better fluidity: one clear example being the outside scroll interaction
pattern, where it is possible to change a parameter of a module by
selecting it and scrolling the encoder, without entering into the module. It
is clear that the user interface improvements from these tests are limited
to the Virtual-Modular implementation. The same outside interactor
example illustrates this: in a hardware implementation, all the
parameters will be already physically present.

The development of this project led to the production of an interesting
new tool to improvise conventional electronic music in ways which may
have not been possible before. The more interesting result, however from
this project has been the discovery of all these new processes and
complexities that are related to improvisation and live performance such
as social interactions, the role of emotions, and the extent to which the
performer’s interaction with the music is noticeable. Additionally, the

135

futures for the environment that was designed in this project transcend
the area of interest of this project in particular and could lead to many
new areas of exploration such as collaborative composition, modular
gestural mapping, and incursions in the mixture of digital and analogue
modular processes to the creation of music.

136

7 Appendix
Additional documents that can illustrate better the
implementation of the Virtual-Modular
environment, including a basic usage tutorial, and
a description of some of the modules that were
created. Note that in the case of the tutorials, the
name Polimod was devised to refer more easily to
the modular environment.

137

7.1 Usage tutorial: Calculeitor
interface introduction
7.1.1 Button Names

Function name of each button in calculeitor, which is effective in both, the
physical and virtual contexts

7.1.2 General button functions in a module

This is a general description of the interface buttons for an overview. If

138

you don’t understand something, don’t worry, it will come clear later.
This guide could serve you as a reminder while you advance in the
tutorials.

• Value (rotation encoder): changes the parameter that is being
displayed on screen. Rotating it right (clockwise), raises the value of
the parameter, and reduces the value when being rotated to the
opposite direction.

• Mode: works like a shift button. This will make sense later, but in
general terms it changes the function of the buttons, or momentarily
alters the module’s response when pressing buttons.

• Event: when you are in a module, this button lets you select what
message it outputs. When in super-interactor mode, this button is
used to mute.

• Settings: when in a module, this button displays a settings menu in
the buttons matrix. By pressing different buttons in the matrix,
different global parameters of the module will be displayed in the
screen, allowing to change them (using the encoder). When in super-
interactor, it is used to delete modules.

• Patching: this button is used to change between the super-interactor
and modules. Think of it as the esc and enter keys of your computer.

• page a-d: if a module contains multiple pages, (e.g. a sequence that
doesn’t fit in the 16 buttons) these buttons serve to select among
them. A bit like scrolling with the mouse, or changing tabs in a web-
browser.

• Button matrix 0-16: these buttons are used to perform. Depending
on the module and whether there is a menu open, they serve
different purposes. The matrix is where the magic happens.

• Record a-d: among the other modules that are connected to the
current module, these buttons enable recording. This allows for
example, to record a drum loop into a sequencer without having to
switch into the sequencer.

139

7.1.3 Super-interactor

super-interactor

The super-interactor is the main interface of the virtual Polimod
environment. In this mode, it is possible to create, open, move and
remove modules. The button functions are different in this mode than
when in a module.

When the application opens, it will be in the super-interactor mode.
Different buttons in the matrix may appear lit in different colours, while
some other buttons may appear unlit. These coloured buttons represent
one module each. Modules can be selected by tapping them.

140

7.1.3.1 entering and leaving a module

When in the super-interactor mode, it is possible to open the interface of
a module by tapping the button that represents the module, and then
pressing the “patching” button.

When a module is in focus, pressing the patching button, closes the
module and goes into the super-interactor mode

tip: it is possible to switch from one module to another fast by
holding the patching button, and releasing it after the desired
module’s button was pressed.

Connecting and disconnecting modules, steps 1-3

1. In super-interactor mode, tap the matrix button which appears blue.
That colour usually represents a sequencer.

2. The button matrix that was previously blue turns white

3. Now press the “patching” button.

4. The contents of the screen change, and the buttons matrix turn off,
displaying a yellow play-head which advances in the matrix. This
means that the calculeitor is focusing a sequencer.

141

Connecting and disconnecting modules, step 4

7.1.3.2 connecting and disconnecting modules

A relation can be established between modules by using the super-
interactor mode. It is only possible to select outputs for each module.
Connections among modules can be seen by selecting the module: the
other modules that turn red are the modules that are connected as
outputs of the selected module. These connections can also be toggled
by holding the module’s button and pressing the output module’s button
while that button is being held.

1. In super-interactor mode, select the module named harmonizer. It is
coloured yellow.

2. Observe that one module turns red. That module is the midi output
module.

142

Connecting and disconnecting modules, steps 1-2

3. Press the selected harmonizer button again. While that button is
held, press the midi output module button (which is currently red).

4. The midi output module button turns grey. This means that these
two modules are not connected any more.

Connecting, steps 3-4

5. Repeat the step 3. The midi output button turns red again, meaning
that the harmonizer is connected again to the midi output.

6. Repeat this operation with other modules. Try connecting and
disconnecting.

Tip: it is possible to see the input modules by selecting the module

143

in question, and then pressing the mode button. The input modules
in this case will turn cyan (light blue)

7.1.3.3 deleting modules

Modules can be deleted and created. To delete a module, tap the
module’s button while holding the “settings” button.

1. In super-interactor mode, press the “settings” button, which appears
blue.

2. The screen displays the text “delete module!”

3. Press one or more than one module button in the button matrix,
while still holding the “settings” button.

Deletion of modules, steps 1-3

4. When the “settings” button is released, the selected modules will be
deleted.

Tip: when a module is selected for deletion, it gets muted. The
deletion of a module can be cancelled by tapping its button again.
Note, however, that once the “settings” button is released, there is
no undoing.

144

7.1.3.4 creating modules

The creation of a module follows two steps: selecting an empty button
(which is not lit), and then selecting the desired new module type
throughout the module creation menu.

1. While in super-interactor mode, tap a button in the button matrix
which is not coloured (unlit)

Creating module, step 1

2. The button matrix changes colours. It is now displaying the available
modules to create.

3. Tap many buttons in the button matrix. The name of each module
will be displayed in the screen. Each module type is represented by a
colour as well.

4. Select the magenta button, which is named narp.

5. Press the “patching” button

145

Creating module, steps 4-5

Tip: inside the module creation mode, it is possible to exit without
creating a new module by pressing the “settings” button. This
closes the menu, and goes into super-interactor mode again.

6. Calculeitor goes back to super-interactor mode, and the new module
appears in the matrix button that you pressed initially.

146

Creating module, step 6

Extra points: connect the new narp module to any of the modules
that are displayed yellow. Then, enter into the narp and try pressing
some buttons in the matrix! Then try changing the output of that
narp to different modules.

Tip: if there are more than 16 modules available, the creation menu
has pages which can be explored by pressing the “page” buttons.

7.2 Usage tutorial: Your first
performance
1. Run the Polimod Virtual-Modular environment, and the synthesizer(s)

147

of your choice.

2. Once the super-interactor is displayed, press one of the yellow-
coloured modules, and open it

First performance, step 2

3. Play sounds by pressing the buttons.
◦ If there is no sound, it means that your chosen synthesizer

might have no sound assigned to one of the channels. In this
case, go back to the super-interactor, and repeat the step 3.

4. Press the record-a button. It should turn red
◦ If it does not turn red, it might be because no module is

connected to the current module. In the default patch, all the
yellow modules are supposed to have one module connected to
them. Simply close the Virtual-Modular environment (use
control+c key combination in the command window), and open
it again.

148

First performance, steps 3-4

5. Play a short pattern, the default tempo is 120 bpm.

6. Press the red button right after you finished playing the pattern.

7. The pattern you played should repeat, with a quantization applied to
it.

8. Press the “patching” button, and enter into the module coloured blue
which is right above the module that you just selected (the last
selected module should appear white in this context).

149

First performance, step 8

9. You should be able to see the sequence that you just played.

10. Modify the sequence: press different buttons in the button matrix, to
program events

11. Select different notes: press the “event” button (second button in
the top) and rotate the encoder, to select different notes or sounds.
Keep the number below 16 for drums, and do not use negative
numbers.

150

First performance, step 11

The sequencer works by layers, allowing you to produce polyphonic
compositions. Each layer is one note (it can be a bit more complex
than that, but let’s leave it for later). Rotating the encoder changes
your point of view from one layer to another.

Tip: to remove an event, you need to be in the same layer. Events
that are removable appear white or cyan (greener blue)

First performance, colour symbology

12. Repeat this operation as many times as you want. You can combine
this tutorial with the concepts explained in the “calculeitor interface
introduction/super-interactor”.

◦ Try creating new sequences and removing older ones.

151

◦ Try connecting the sequencers to other modules.

Are you able to discover your own ways of performing already?
Annotate your discoveries so that you can replicate them!

7.3 Usage manual: event
configurator
The event configurator is used in most modules. It is used to select a
message, which will presumably be sent to the module’s output. Think of
it as a word selector: it select what the module will tell the other
modules.

An event-message is composed by many numbers. With the event
configurator, it is possible to select each of these individual numbers.

7.3.1 Pre-configured events

While you hold the event configurator, some matrix buttons appear blue,
and some other appear magenta. The blue buttons are used to select
pre-configured events (for easier use). By tapping these blue buttons,
different types of events are configured for you. The most used is the
first one, named note trigger. The note trigger events are those whose
first number is 1.

The last blue button, named manual, lets you manually configure each of
the four numbers of the event.

7.3.2 About events

The effect that an event-message has over a module depends on the
numbers that it contains. The most important number is the first one
(also named num[0], or head); this one determines the function type of
the event. Some examples of function type are clock beat, trigger note
and change rate. It is analogous to the first nibble of the MIDI header
byte. The other numbers usually give more details about that action. For
example, if the event is of note type, the following numbers may
determine the note number (pitch, or timbre), channel, velocity, among
other things.

Knowing the role of each number depending on the header can be a bit

152

tricky to remember. This is why pre-configured events may be useful: if
you select a clock event, the following numbers will be renamed as cycle
and micro step accordingly. This makes it easier to choose an event. Try
different things! If you were strongly expecting something to happen, but
it doesn’t, it could mean that you have a feature request, specially once
you become well acquainted with Polimod.

There is a known bug where a pre-configured event gets a header
that doesn’t correspond. We haven’t figured out yet what causes
this.

7.4 Usage manual: Sequencer
7.4.1 Recording

In default mode, a sequencer tries to adjust the length of the sequence
to the performed pattern, without leaving silent gaps. This means that
most of the times, parts of the recording are cut off the sequence.

• These events can be recovered using “shift + compensate”
technique

• The recording mode can be changed so that the length does not
change

• By default, the sequencer goes to “overdub” mode right after
recording.

You can change the recording behaviour by using the recording
configurators. These are present in the last buttons of the settings menu.

7.4.2 Creating and removing events

Events are created simply by pressing a button in the matrix. If an event
is present in the same button as the pressed, and this event has similar
characteristics, it will be removed.

The duration of the events is equivalent to the amount of time that the
button is pressed when creating it.

To remove events regardless of the layer, press the shift button (first one,
top row). Events of different header, however, can not be accessed using
this technique.

153

From practice, it becomes clear that it is better to dedicate sequencers to
specific functions. This makes the navigation and edition a lot easier. If
there are too many different events (e.g. clocks, and notes in the same
sequencer, or many different voices and instruments) in a sequencer, it
becomes hard to remove specific events.

7.4.3 Choosing the event / layer

In this sequencer, layer is equal to the event being created. The
underlying assumption is that you will rarely need to create two events of
similar characteristics at the same time.

To select the event, press the event button; this displays an event
configurator. The event’s first number (note, if it is a trigger event)
becomes the layer. The numbers 2 and 3 are ignored with respect to the
layer. The events whose number 2 is different than focus, however,
appear in cyan instead of white.

By pressing the shift button (first, top row) you can set the focus to every
event with the same header. Events with other headers appear red. This
is useful to remove events without having to meticulously go layer by
layer. To remove events of different headers, however, there is no
shortcut.

When an event is removed using shift, the event configurator is adjusted
automatically to be the same as the removed event. This is handy for
when you need to move an event to a different place.

7.4.4 Changing the length

The sequencer offers many different ways to change the length, because
changing length can be a way to perform. All the length configurators are
present in the configuration menu; settings button, third button in the
top row.

7.4.4.1 Traditional length adjustment

• While holding the settings button, press matrix button 0.
• The screen should read “set loop length” and " to 16"
• You can release the buttons.
• Rotate the encoder. This will change the loop length value. The effect

will become very clear if you make the sequence shorter than 8.

154

7.4.4.2 Folding

Folding is changing the sequence length to the double or half of the
current length. It will be easiest if you set the sequencer length to 8 or
16, to understand the effect of folding.

7.4.4.3 non-destructive folding

• while holding the settings button, press the matrix button 1

• The screen should read “set fold” plus something like “2^4>16”

among the numbers 2^4>16, the first number represents the
folding base, and the second number the exponent, and the third
number is the current loop length. If you wish to use other base,
such as 3 (meaning that the length triplicates instead of
duplicates), hold the shift button while you rotate the encoder22

• Rotate the encoder. The loop length changes drastically to halves or
doubles of the current length.

• The length can be re-established, and the sequence remains. This
means that you can use non-destructive folding to hide patterns that
can appear later.

7.4.4.4 destructive folding (folding!)

• while holding the settings button, press the matrix button 2

• The screen should read “set fold!” plus something like “2^4>16”

• Rotate the encoder up. This duplicates the sequence length, but the
new sequence instead of being blank, it is a copy if the first half of
the sequence.

• Rotate the encoder down. The sequence out of the range is not only
hidden, it is also cleared.

Needless to say; choosing the wrong type of folding can be fatal to
a performance. Always put attention to whether the action contains
the “!” character. This character indicates that the folding is
destructive.

22not implemented yet.

155

7.4.5 Paging

If the length of the sequence is larger than 16, it is possible to edit the
entire sequence by using the page buttons. For lengths higher than 128
it gets harder to navigate.

7.4.5.1 Page buttons

The second row of buttons are used to jump into the pages 0 to 3 (steps
0 to 63). The buttons underneath the matrix buttons are used for the
pages 4 to 7 (steps 64 to 127).

Any page can be selected by using the page configurator. This
configurator is selected by pressing the matrix button 5 while holding the
settings button. The screen should read “set page”, followed by the
current page.

7.4.6 Shifting the sequence

By shifting the sequence, two different things can be understood, both of
which are possible:

• changing the position of the play-head, which changes the
coordination of the sequence with respect to any other sequence

• changing the position of the sequence within the loop, without
affecting its coordination to other sequences (the sequence is
actually shifted, but the play-head is shifted too, to compensate).

7.4.6.1 Compensated shift

• While holding the settings button, press the matrix button 3
• The screen should read “set shift+cpte.” and “to 0”. This stands for

“shift and compensate play-head position”
• Rotate the encoder either side, explore, for example going down

from -8 and then up to +8. Observe what happens to the sequence.

Compensated shift is specially useful to put the events where you expect.
A typical situation is that, after recording, say, a drum pattern, the strong
notes end up in odd buttons. It is often expected in a sequencer that the
strong events are placed in even buttons, such as the button 0.

Another use to this shift, is to hide parts of the sequence. Let’s say that
you want to smoothly make a melody to disappear. You can slowly shift

156

the melody outside of the sequencer boundaries,

7.4.6.2 play-head shift

play-head shift merely adds or subtracts to the play-head position,
causing the sequence to offset from its original position.

• While holding the settings button, press the matrix button n¤7 (it is
right over the compensated shift button!)

• The screen should read “set drift substep”
• Rotate the encoder left or right. The sequencer changes its position

This technique is specially useful when you have the sequencer well
synced to other sequencer or gear, but the step position is not right. First
determine how many steps you need to offset it with respect to the other
sequences, and then rotate the encoder for the same amount of clicks
that you calculated.

Other ways to offset the sequencer are by external module or by
jumping. When a sequencer receives a trigger on (or note) event, it
jumps to the step indicated by the number [1]. It is possible to manually
jump to a step by pressing shift+event+the desired step button.

7.4.7 Sequencer rate

A sequencer maps directly one step per step. It is possible, to make it
faster or slower (e.g. double or half the speed). This affects the amount
of clocks that it takes to advance one step; and the length of those
events too (for the case of trigger events).

• While holding the “settings” button, press the matrix button number
6 (third button in the second row.)

• The screen should read “set step length” and “to 1”
• Rotate the encoder. This effectively causes the sequence to run at

different speeds.

This technique is specially useful for events that need to happen less
often. Let’s say that you have one sequencer with length 5, while all your
song is playing at 4/4 metric. In this case, you can add a sequencer that
resets the position of the 7 steps sequence back to 0 every 128 steps.
Another example is when you are using the sequencer to set the tonality
of a melody at every repetition of the melody.

157

7.5 Description of various
modules in the Virtual-Modular
environment
In devices that have any type of sequence, there are three different step
measures, that are related. A step, is the musical step that we are used
to, in a sequencer, the step corresponds to the position of the playing
head. A sub-step is a translation between steps from a clock sync source,
and the sequencer’s step. The reason for having a sub-step, is to allow
the musician to have slower sequences that wait, for example, eight
steps from the clock to advance just one step in the sequencer. If the
example sequencer step rate is set to 1, then steps are equivalent to
sub-steps. The smallest clock measure so far are the micro-steps. The
idea of micro-steps are taken from the MIDI specification, where 24 clock
sync signals are specified to conform one quarter note (“Summary of
MIDI Messages” 2018).

Those modules whose function principle is simple are presented with a
code which explains the basic working principle. The code used in the
actual prototype is more complex because it needs to be secure against
failure and interact with a user interface. For every case the module also
implements more features which enhance the versatility of the module.

A function mapping of inputs is also provided. In the context of the
context of Virtual-Modular environment only two inputs were possible per
module given the interface that was used. These are provided in a list,
for each input (main and recording inputs), a list of headers are provided
and what effect does each header produce in the module. As it was
described, the event-messages are defined as variable duration,
consecutive numbers. The header being the first number, and the
following numbers being named consecutively. According to this the
event-message is described as [header, number 1, number 2, ... , number n].
Some of the functions that are described in this list may have not been
yet implemented at the time this document was printed.

7.5.1 Preset-kit

Minimal procedure (expressed in javascript):

Module=function (environment){

158

 var self=this;
 var kit=Array (16);
 this.onMessageReceived=function (message){
 if (message[0]==headers.triggerOn){
 if (kit[message[1]]){
 if (kit[message[1]].active) self.sendMessage (kit[message[1]]);
 }
 }
 }
 function setPreset (number,event){
 kit[number]=event;
 }
 function mutePreset (number){
 kit[number].active=false;
 }
 function unmutePreset (number){
 kit[number].active=false;
 }
}

A preset-kit offers a fast way to map a set of 16 event-messages to other
16 event-messages. This make it possible to remap the outcome of a
sequencer without having to edit the sequence step by step. It also
allows to filter events of a sequence by muting or unmuting presets.

• Inputs:
◦ Main:

▪ Trigger on: the preset numbered with the event-message
number 1 is triggered to the output. All the numbers
present in the incoming message, but not defined in the
preset are copied to the output as well (this provides the
possibility to have dynamic velocities on synthesizer-
triggering messages, for example)

◦ Recording:
▪ Record default: the recording header is removed from the

message, and all the subsequent numbers are shifted left.23

The resulting event-message is assigned to a preset
number. The preset number to change upon recording
message is consecutive, meaning that they are recorded
consecutively. If the last preset is reached, this count starts
from 0.

7.5.2 Harmonizer

Representation:

Minimal procedure (expressed in javascript):

23in most programming languages there is a shift () function which does

159

Module=function (environment){
 var self=this;
 var scale=[0,2,4,5,7,9,11];
 this.onMessageReceived=function (message){
 if (message[0]==headers.triggerOn){
 var noteIn=message[1];
 var octave = Math.floor (noteIn / scale.length);
 var grade = scale[noteIn % scale.length];
 var noteOut = grade + (12 * octave);
 self.sendMessage ([message[0],noteOut]);
 }
 }
}

General:

Harmonizer maps inputs into outputs that belong to a musical scale, thus
creating an abstraction of harmony. A musical scale consists on a subset
of event-messages out of a 12 note chromatic scale. From an incoming
trigger event-message, an octave number and grade number are
extracted by using floor (number[1]/scale.length) and number[1]%scale.length
respectively. These two factors are used to translate the incoming
number 1 into a scale grade24 and an octave number. The scale grade is
selected from the scale array, and added to the extracted octave times
12.

In this mode of operation, the output range of the incoming stream of
events is expanded. This is because the number of selected output notes
can only be the same length or smaller than 12, which is the times the
extracted octave is multiplied by. This has proven to be problematic in
some specific scenarios. For instance, changing the scale to a newer
scale with smaller amount of grades could cause the resulting pitches or
numbers to change their range drastically. To solve this problem, in the
described mode of operation there needs to be a modulation centre note.
This one determines which note does not get transformed. The notes
lower to this pivot notes get lower than the input, and the notes higher to
this pivot note get higher. This is a process similar to scaling in the ambit
of graphics. The selection of a pivot note in this case is analogue to the
selection of a centre in a scaling operation.

An alternative mode of operation for this module, which is not prone to
drastic range changes is to round the incoming notes into grades instead
of expanding them. For each incoming note, the octave and grade
number are extracted. Instead expanding the range of the incoming note

24grade is defined here as the number of the note among the subset of notes
in a scale scale rather than chromatic note (e.g., note 2 is C# in chromatic,
but D in C major).

160

by mapping it into an array, this mode intends to keep the range and
round the incoming note to the nearest grade. For this, the octave and
grade extraction functions are respectively floor (number[1]/12) and
number[1]%12. Among the scale array, the number is sought which as the
smallest difference (higher than 0) from the extracted grade number.
This found number is used as the output grade number, to which the
octave times 12 is added.

The harmonizer has 16 memories for scales, that can be configured
freely to any possible scale within the western 12 chromatic notes
system. This allows the fast toggling between different pre-set scales or
chords. This allows many interesting modulations; for instance, if the
harmonizer is transforming the output of a short musical sequence, this
sequence can be modulated along each repetition to form different
structures, obtaining a modulated melody sequence. It is also possible to
use a harmonizer to obtain unexpected mapping from patterns of
percussion.

A harmonizer features a keyboard style interface. The recording output of
a harmonizer consists on the keyboard notes that are pressed i.e. the
grades. This allows, as explained, to re-map the recorded sequence into
another harmony. The switching of scales is also recorded.

A harmonizer needs to have two event-message configuration layers:
one layer of configuration edits the messages that are sent to the output;
these overwrite the information coming from the input. The second layer
contains the notes that are used in the keyboard, and thus recorded.

• Inputs:
◦ Main:

▪ Trigger on triggers a note on. The second number is
remapped to belong to the chosen scale.

▪ Preset change changes the current scale, effectively
changing the way how the incoming notes are remapped to
grades. The second number determines the new scale to
use.

▪ Rate change changes the base note, effectively
transposing the output chromatically according to the
number 1.

◦ Recording:
▪ Record default The recording event-message is shifted to

remove the header. The resulting event-message is used as
the output operation of the harmonizer.

▪ other recording events will be designated in the future to
activate or deactivate grades in the scale, and alter
different parameters.

161

7.5.3 Mono-sequencer

minimal procedure (expressed in javascript)

Module=function (environment){
 var self=this;
 var pattern=Array ();
 var playhead=0;
 this.onMessageReceived=function (message){
 if (message[0]==headers.clock){
 if (message[1]%message[2]==0){
 if (pattern[playhead]!==undefined){
 self.sendMessage (pattern[playhead]);
 }
 playhead++;
 playhead%=16;
 }
 }
 }
 function addEvent (step,event){
 pattern[step]=event;
 }
}

General:

Mono-sequencer is a 16 steps sequencer that only allows programming
of one event per step, and only allows a maximum of 16 steps of a
sequence.

This module is used as testing module to build new versions of the
environment. During this development, the environment has been re-
programmed 5 times in three different languages, with different levels of
success. The mono-sequencer is the best test module to work with,
because it produces inputs and outputs, it has a simple functionality to
program, and it can be modified easily to become a full sequencer when
the environment is completed further.

7.5.4 Sequencer

Sequencer represents a classical style sequencer, with some additional
features for better performability. There are many edition tools in the
sequencer that do not target a specific musical modulation, but offer
generic pattern handling options, allowing unexpected modulations by
using combinations of these modifiers. Not too many modulations are
possible with the sequencer, however. The broader range of modulations
are achieved by using the sequencer in different combinations with other
modules.

162

The sequencer evolved from a mono-sequencer that was used to test the
first prototype of the environment, to a sequencer that can hold a wide
variety of musical expressions, although always in a quantized format.
The first additions that were inspired by Elektron sequencers was the
look sequencing which consists on establishing an event recurrence that
is different from the sequencer length, allowing to program events that
recur more than once in a sequence. Having evolved from a mono-
sequencer, the sequencer holds a vernacular quantized step memory.
There was an immediate realization for need of real-time recording
capabilities, which is present on most sequencers. Because of the
mentioned quantized memory, the mode of recording is most similar to
the Electribe’s procedure because of its similar quantization.

Inspired in some of the Maschine affordances to play, the sequencer also
acquired the ability to reset position on the real time, to allow performing
with polyrhythm in an expressive way or doing jumps in the sequence in
the style of cue-point jumping. This led to an interface procedure where
tapping a sequencer button would perform the jump. The musical tracks
in Maschine are tempo-locked, meaning that there is not much liberty to
drift tracks away one from other, but it is also a very comfortable feature
for most of the time. This realization, together with the need to automate
the mentioned step-jumping, inspired the step-jumping message types in
the sequencer, allowing to create sequencers that are strictly tempo-
synchronized (if they are being triggered periodically at the same time)
and also sequencers which are constantly jumping off of sync (if the
sequencers are triggered differently).

• Inputs:
◦ Main:

▪ Micro step the second number indicates the amount of
micro-step for each step of this clock, the third number
indicates the micro-step number within the indicated micro-
steps. When the third number % second number equals
zero, one sub-step is advanced.

▪ Trigger on jumps to the step indicated by the second
number and sets the sequencer to play

▪ Trigger off stops the sequencer playback only if this
functionality has been activated by the user.

▪ Rate change changes the amount of sub-steps per step.
By default this value is 1, which makes the sub-steps a
synonym of steps. Different values, however allow the
sequencer to run at different rates (for example half or
double the speed).

◦ Recording:
▪ Trigger on The event-message is added to the sequencer

in the current playback position. This facilitates real-time

163

recording of events from modules such as harmonizer or
preset-kit.

Based by Maschine’s handling of patterns in a sound, or similarly
Ableton’s handling of clips in a track, a sequencer should be able to hold
multiple sequences that can be exchanged. This allow an additional axis
of expression where a sequence can evolve in many ways and still be
able to get back to the initial point. There has been a history of
speculation about this feature that goes all the way back to the initial
idea of this project, even after there was an idea of making a modular
environment. The first idea, was to have a generative function that alters
any existing sequence to any extent. This would allow to generate many
variations of a user-defined sequence by turning a knob, according to a
function that guarantees consistency, thus allowing to turn the pattern
back to the original state. The second idea consisted in having a multi-
clip sequencer, which derived into the creation of the multitape module
and has not attained yet a satisfactory state.

Current ideas for this feature comprehend the implementation of a
pattern history, similar to the undo history of user-friendly computer
software, or the selection of looping points, which could be shifted freely
to reveal different sections of a longer pattern. Although the undo history
based pattern-variation procedure seems like the most user friendly and
attractive, it poses some questions that are hard to answer; for instance,
if a user goes back to undo history and makes a change, what happens
with all the redo-able states? Would the history discard the original
pattern of that undo stage, or would it include a new state in the redo
stack? Would the history become more like a tree, whose different
branches could be explored? In such case, what kind of user interface
would prevent the user from getting lost? If linear, the ability to go back
in history would become like an array of versions each of which can be
customized; but in that case, what defines the limit between one version
and another? Would, for instance each newly introduced or removed
event create a new version, or the user would need to establish by hand
the division between versions? All these questions are very open to
different answers, and due to time availability an optimal solution has not
yet been decided.

7.5.5 Narp

Narp is a stripped version of an arpeggiator. The button matrix is used to
activate or deactivate different events. The event on each button
consists on a trigger on message, with a second number defined as the
button number plus a base displacement. The narp allows events with

164

numbers only in a range of 16, and only does the operation in order from
the lowest to the highest active number. If events are received with a
higher number, a remainder operation takes place (% 16) to set that
number within range. The idea behind such a limited module, is to foster
free and safe exploration. This module is very suitable to produce ever-
drifting polyrhythms, since the length of an arpeggiated sequence
depends on the amount of notes included in the arpeggio cycle. The
other advantage of the narp, is that it restricts the output events into one
event. This can be useful to produce an accompanying arpeggio to a
melody, using a different MIDI channel in the output.

• Inputs:
◦ Main:

▪ Micro step: the second number indicates the amount of
micro-step for each step of this clock, the third number
indicates the micro-step number within the indicated micro-
steps. When the third number % second number equals
zero, one sub-step is advanced.

▪ Trigger on: activates the arpeggiator note indicated by the
number[1]%16 operation.

▪ Trigger off: deactivates the arpeggiator step which was
activated by the note on that possessed similar values.

◦ Recording:
▪ Trigger on Narp records the notes that are activated and

deactivated as trigger on and trigger off events. It is
intended to record the changes on the sub-step to step ratio
as well, although this feature has not yet been
programmed.

7.5.6 Arpeggiator

An arpeggiator is a typical building block in music, and perhaps it is the
one that most strongly suggested the need for a modular environment
that treats event-messages as signals to be processed through effects.
Different from the narp, an Arpeggiator stores the incoming notes in
order, and plays them alternatively on each step according to this order.
Different arpeggio patterns can be achieved if its clock source is
sequenced by an external sequencer. Unlike the narp, the arpeggiator
can hold an arpeggio of notes in any range and with many different
properties, in an order that is not necessary incremental.

The Arpeggiator can be used either as an effect that interrupts and
modifies the stream of event-messages, or as a module that can receive
the notes as recording notes, feeding them back to the module that is

165

originating them. This allows an easier mode of use, because while
performing a pattern on a module, the user can activate or deactivate
the arpeggiator without having to change the connections but just by
enabling or disabling the recording.

One feature which may be implemented is the addition of any incoming
note regardless of the header to the memory. The only exception in this
case, would be timing messages received in the main input.

• Inputs:
◦ Main:

▪ Trigger on the event is added to the arpeggiating memory
▪ Trigger off the events whose second and third number are

the same, is removed from the memory.
▪ Micro step a micro step is advanced. This leads to the

advancement of steps according the step ration user
setting. When a steps advance, one consecutive event from
the memory is played.

◦ Recording:
▪ Trigger on Recording events in the Virtual-Modular

environment, have the same effect as normal events,
allowing different patch routes.

7.5.7 Game of life

Game of life was the first module made to consider ideas of more
experimental modules, allowing a broader area of musical
experimentation based on unexpected behaviour. This idea is obviously
borrowed from the more generative Euro-rack modules such as
Makenoise’s Maths or Music Thing Modular’s Touring Machine, and was
closely based on Reaktor’s Newscool patch. This module uses the 16
buttons matrix as a grid to run Conway’s game of life algorithm
(Jiameson 2016).25 The grid was modified in order to “wrap around” the
effect of the algorithm, meaning that the first row of cells are affected by
the last and vice versa, and the last column of cells are affected by the
first column and vice versa.

• Inputs:
◦ Main:

▪ Micro step the second number indicates the amount of
micro-step for each step of this clock, the third number
indicates the micro-step number within the indicated micro-

25At each step of this module, each cell that is “living”, will produce a [trigger
on] event whose second number equals the grid button number plus a global
displace value (Jiameson 2016).

166

steps. When the third number % second number equals
zero, one sub-step is advanced.

▪ Trigger on activates the arpeggiator note indicated by the
remainder of the second number when divided by 16

▪ Trigger off deactivates the arpeggiator note indicated in
the same way as the trigger on.

▪ Rate change sets the amount of sub-steps that must be
counted to advance one step

▪ Rate change 2 how many sub-steps a note should be held
on once it is triggered by the arpeggiator. This allows for
fractions of a sub-step.

◦ Recording
▪ Trigger on The mechanic of note-off and note on in the

game of life is the same as in a narp; taking the same effect
as if it was received through the main input.

▪ Trigger off

7.5.8 Clock based delay

The delay stores any input event in a memory except for the clock
events, and propagates them to the output once the user-specified delay
time is reached. The time is counted in accordance with the received
clock events. It is possible to build a feedback mechanism to the delay
using operators. However, this was integrated into the delay module
itself in order to simplify this common procedure. The use of constructed
feedback remains interesting because it allows chaining effects which
could produce unusual results.

• Inputs:
◦ Main: any incoming event except for clock and rate change

events are stored in a memory.
▪ Micro step the micro step is advanced, which can result in

the triggering of events which are stored on memory,
depending on the delay time user setting. All the events
which are propagated to the output are removed from the
memory.

▪ Rate change changes the delay time setting.

7.5.9 Route-sequencer

The route-sequencer forwards all the incoming events, except for the

167

clock events, into one of its outputs. The output to which the events are
forwarded are determined by a step sequencer. The step sequencer
advances in position in relation to the received clock. The rate of this
sequence is determined by the clock ratio specified by the user.

7.5.10 Chord generator

The chord generator module produces a simple transformation
exclusively to trigger on events. Each received trigger event is treated as
a note, and many replicas of the initial note may be generated with
different values on the number 1. The amount of times to replicate the
event and the value of each replica relative26 to the input event. The
relative value of each replica is determined by the user through a simple
matrix interface. The interface represents a pivot note as a red square.
The active state of each square in the matrix is toggled by pressing.
Active matrix buttons account for one copy of the original event, whose
relative value is represented by its distance from the representation of
the root. The distance is not measured spatially, but sequentially in a
way similar to the occidental flow of text; meaning that an active square
immediately below the root is not at distance 1, but at distance -4. The
different copies of the root event, henceforth can be defined by the user
as copies below or as copies above the original note.

7.5.11 Operator

Operator is the implementation of one of the basic elements discovered
at the end of the buildification process described earlier as its function
was often speculated would be useful. An operator simply changes an
input event-message by applying a mathematical operation to each one
of the message’s numbers; hence its user interface consists on a set of
pairs of operations and numbers.

[in] ?! [op] notch filter: every event-messages whose [n] number equals to the
operation number is discarded
[in] ? [op] band filter: every event-message whose [n] number differs to the
operation number is discarded
[in] > [op] high pass filter: every event-message is discarded, except if their
[n] number is higher than the operation number.
[in] < [op] low pass filter: every event-message is discarded, except if their
[n] number is lower than the operation number.
[in] = [op] set (or assign): every event-message's [n] number is set to the
operation number

26meaning that the output value is equal to the input value plus the
corresponding number.

168

[in] + [op] add
[in] - [op] subtraction
[in] / [op] division
[in] % [op] remainder

• Inputs:
◦ Main: for each number of the received event, the corresponding

operation is performed and fed to the output.
◦ Recording An operator can receive recording messages. The

recorded message replaces the operation numbers correlatively.

7.5.12 IO MIDI

In the context of the Virtual-Modular environment, this was the module
used to output the results of the environment into another environment
which could sonify the events (e.g., Pure-Data, Super Collider, Maschine).
This module transforms the incoming event-messages into MIDI by
applying the operation specified in Fig. 43.

7.5.13 Clock generator

A Clock generator module generates a stream of micro-steps. These are
used by some modules to determine the playback of sequences,
arpeggios, or any other time related features. This module does not take
any input. It could be stipulated that an input could determine the clock
speed in a future implementation. In the current virtual environment it is
technically problematic to automate a clock change. This is because
javascript does not offer a built-in framework for real time interval
functions, and a more complex algorithm27 was built to keep the relation
between javascript intervals and the real-time ones. This leads to tempo
changes to take effect gradually instead of instantly.

7.5.14 Bouncer

Another module in the family of basic modules is the bouncer, which
casts all the incoming messages as recording messages into the output
modules. Implemented as a hardware, the bouncer would not exist since
any module could be connected to the recording input of any other
module. It was inspired by many different hardwares such as Kaoss Pad
or Maschine in their capacity to re-sample their own outputs, allowing

27the mentioned algorithm measures the difference between the clock events
to the time they were supposed to happen in relation to the real-time clock,
and times the next iteration with compensation to this difference.

169

feedback in the process of modifying an ongoing pattern.

170

8 Bibliography
& references
“Ableton Manual: Using Push.” 2018. Ableton. Accessed December 2.
https://www.ableton.com/en/manual/using-push/.

Aldunate Infante, Joaquín. 2013a. “Brocs.” Autotel.co. January.
http://autotel.co/portfolio/brocs/.

———. 2013b. “Brocs: Objeto Para Experienciar Sin Conocimiento, La
Música de Forma Auto-Télica.” Universidad Diego Portales.
https://drive.google.com/file/d/0B_0eojMydbGZcVFuVDJkMVRDb2c/view.

———. 2014. “Licog Composer.” Autotel.co. January 1.
http://autotel.co/portfolio/licog-composer/.

“Analog Four Manual.” 2018. Elektron. Accessed July 4.
https://www.elektron.se/wp-content/uploads/2017/10/Analog-Four-MKII-
User-Manual_ENG-2.pdf.

Andean, James, and Alejandro Olarte. 2012. “Sound, Music and Motion:
Sound Art and Music in Cross-Disciplinary Improvisation.” In Third
International Symposium on Music/Sonic Art: Practices and Theories.
Centre for Music & Technology, Sibelius Academy.

Arar, Raphael, and Ajay Kapur. 2013. “A History of Sequencers: Interfaces
for Organizing Pattern-Based Music.” In Proceedings of the Sound and
Music Computing Conference 2013, SMC 2013, 383–88. Academic Press.
http://smcnetwork.org/system/files/A%20HISTORY%20OF
%20SEQUENCERS%20INTERFACES%20FOR%20ORGANIZING
%20PATTERN-BASED%20MUSIC.pdf.

“Blocks: The Instrument That Grows with You.” 2018. ROLI Ltd. Accessed
June 26. https://roli.com/products/blocks.

Bostock, Mike. 2017. “D3.js - Data-Driven Documents.” https://d3js.org/.

Butler, Mark J. 2006. Unlocking the Groove: Rhythm, Meter and Musical
Design in Electronic Dance Music. Indiana University Press.

171

https://d3js.org/
https://roli.com/products/blocks
http://smcnetwork.org/system/files/A%20HISTORY%20OF%20SEQUENCERS%20INTERFACES%20FOR%20ORGANIZING%20PATTERN-BASED%20MUSIC.pdf
http://smcnetwork.org/system/files/A%20HISTORY%20OF%20SEQUENCERS%20INTERFACES%20FOR%20ORGANIZING%20PATTERN-BASED%20MUSIC.pdf
http://smcnetwork.org/system/files/A%20HISTORY%20OF%20SEQUENCERS%20INTERFACES%20FOR%20ORGANIZING%20PATTERN-BASED%20MUSIC.pdf
https://www.elektron.se/wp-content/uploads/2017/10/Analog-Four-MKII-User-Manual_ENG-2.pdf
https://www.elektron.se/wp-content/uploads/2017/10/Analog-Four-MKII-User-Manual_ENG-2.pdf
http://autotel.co/portfolio/licog-composer/
https://drive.google.com/file/d/0B_0eojMydbGZcVFuVDJkMVRDb2c/view
http://autotel.co/portfolio/brocs/
https://www.ableton.com/en/manual/using-push/

“Circuit.” 2018. Novation. June 19.
https://us.novationmusic.com/circuit/circuit.

“Circuit Mono Station.” 2018. Novation. June 19.
https://us.novationmusic.com/synths/circuit-mono-station.

“Circuit User Guide.” 2017. Focusrite Audio Engineering Limited.
https://d2xhy469pqj8rc.cloudfront.net/sites/default/files/novation/
downloads/15792/circuit-ug-en-03-v1-6.pdf.

Cornish, David. 2013. “Watch Imogen Heap’s Full Wired 2012 Glove
Demo and Performance.” Wired.co.uk. January 11.
https://www.wired.co.uk/article/imogen-heap.

Cox, Carl, and Adam Beyer. 2018. CARL COX B2b ADAM BEYER at
Junction 2. Mixmag. https://www.youtube.com/watch?v=E20vtLY6MIw.

“Creating MIDI Effects.” 2018. cycling74. Accessed August 15.
https://docs.cycling74.com/max5/vignettes/core/live_midieffects.html.

“Deluge.” 2018. Synthstrom Audible.
https://synthstrom.com/product/deluge/.

“Documentation | Konva - JavaScript 2d Canvas Library.” 2018.
https://konvajs.github.io/docs/.

Doepfer, Dieter. 2018. “Technical Details A-100.” Accessed December 2.
http://www.doepfer.de/a100_man/a100t_e.htm.

Dylan Wray, Daniel. 2013. “‘Algorave’ Is the Future of Dance Music (If
You’re a Nerd) - Creating Music with Computer Code.” Vice Magazine.
Vice Magazine. November 25. https://www.vice.com/en_us/article/bn5zz4/
algorave-is-the-future-of-dance-music-if-youre-an-html-coder.

Emmerson, Simon. 2007. Living Electronic Music. Ashgate.
https://ebookcentral-proquest-com.libproxy.aalto.fi/lib/aalto-ebooks/
reader.action?docID=429715&query=.

Fantinatto, Robert. 2014. I Dream of Wires.

“Field Kit- Electro Acoustic Workstation.” 2018. KOMA Elektronik GmbH.
Accessed June 26. https://koma-elektronik.com/?product=field-kit.

Foreman, Darren. 2011. Beardyman: “Unshaved” at the Udderbelly,
London (Episode 1). DJ Mag. https://www.youtube.com/watch?
v=pnl1R2dUiD0.

Frey, Tim, Marius Gelhausen, and Gunter Saake. 2011. “Categorization of
Concerns: A Categorical Program Comprehension Model.” In SPLASH
Conference Preceedings.
https://ecs.victoria.ac.nz/foswiki/pub/Events/PLATEAU/Program/plateau20

172

https://ecs.victoria.ac.nz/foswiki/pub/Events/PLATEAU/Program/plateau2011-frey.pdf
https://www.youtube.com/watch?v=pnl1R2dUiD0
https://www.youtube.com/watch?v=pnl1R2dUiD0
https://koma-elektronik.com/?product=field-kit
https://ebookcentral-proquest-com.libproxy.aalto.fi/lib/aalto-ebooks/reader.action?docID=429715&query=
https://ebookcentral-proquest-com.libproxy.aalto.fi/lib/aalto-ebooks/reader.action?docID=429715&query=
https://www.vice.com/en_us/article/bn5zz4/algorave-is-the-future-of-dance-music-if-youre-an-html-coder
https://www.vice.com/en_us/article/bn5zz4/algorave-is-the-future-of-dance-music-if-youre-an-html-coder
http://www.doepfer.de/a100_man/a100t_e.htm
https://konvajs.github.io/docs/
https://synthstrom.com/product/deluge/
https://docs.cycling74.com/max5/vignettes/core/live_midieffects.html
https://www.youtube.com/watch?v=E20vtLY6MIw
https://www.wired.co.uk/article/imogen-heap
https://d2xhy469pqj8rc.cloudfront.net/sites/default/files/novation/downloads/15792/circuit-ug-en-03-v1-6.pdf
https://d2xhy469pqj8rc.cloudfront.net/sites/default/files/novation/downloads/15792/circuit-ug-en-03-v1-6.pdf
https://us.novationmusic.com/synths/circuit-mono-station
https://us.novationmusic.com/circuit/circuit

11-frey.pdf.

Gibson, James J. 1979. The Theory of Affordances. Lawrence Erlbawm
Associates.
https://monoskop.org/images/c/c6/Gibson_James_J_1977_1979_The_Theor
y_of_Affordances.pdf.

Goodacre, Liam. 2018. “Context Sequencer.” Accessed June 26.
https://contextsequencer.wordpress.com/.

Groves, Wesley. 2016. “Intro to Eurorack Part I: Doepfer’s Beginnings and
Power Supply Basics.” Reverb. July 8. https://reverb.com/news/intro-to-
eurorack-part-I-doepfers-beginnings-and-power-supply-basics.

Guilford, Joy Paul. 1970. “Creativity: Retrospect and Prospect.” The
Journal of Creative Behavior 4 (3): 149–68.

Heap, Imogen. 2013. Imogen Heap Performance with Musical Gloves
Demo. WIRED UK. https://www.youtube.com/watch?v=6btFObRRD9k.

Hesmondhalgh, David. 1998. “The British Dance Music Industry: A Case
Study of Independent Cultural Production.” The British Journal of
Sociology 49 (2). Wiley-Blackwell: 234–51.
http://www.jstor.org/stable/591311.

Hilgenfeld, Olaf, and Iftah Gabbai. 2017. SKINNERBOX LIVE 2017
(Ableton, Moog, Eurorack). Skinnerbox. https://www.youtube.com/watch?
v=mm2xjtE9Iqs.

Howlett, Liam, Ashley Abram, and Yukako Nakajima. 1992. Wind It up.
The Prodigy Experience. XL Recordings.

Jiameson, Ali. 2016. “Reaktor’s Newscool.” Zeroes and Ones. May.
http://alijamieson.co.uk/2016/05/reaktors-newscool/.

Kaltenbrunner, Martin, Sergi Jordà, Günter Geiger, and Marcos Alonso.
2006. “The reacTable*: A Collaborative Musical Instrument.” In
Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.150.9219&rep=rep1&type=pdf.

Kavanaugh, Philip R., and Tammy L. Anderson. 2008. “Solidarity and Drug
Use in the Electronic Dance Music Scene.” The Sociological Quarterly 49
(1): 181–208. doi:10.1111/j.1533-8525.2007.00111.x.

Kirn, Peter, ed. 2011. Keyboard Presents: The Evolution of Electronic
Dance Music. Backbeat Books.

Koskinen, Tommi. 2015. “The UFO Controller Gestural Music

173

https://doi.org/10.1111/j.1533-8525.2007.00111.x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.9219&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.9219&rep=rep1&type=pdf
http://alijamieson.co.uk/2016/05/reaktors-newscool/
https://www.youtube.com/watch?v=mm2xjtE9Iqs
https://www.youtube.com/watch?v=mm2xjtE9Iqs
http://www.jstor.org/stable/591311
https://www.youtube.com/watch?v=6btFObRRD9k
https://reverb.com/news/intro-to-eurorack-part-I-doepfers-beginnings-and-power-supply-basics
https://reverb.com/news/intro-to-eurorack-part-I-doepfers-beginnings-and-power-supply-basics
https://contextsequencer.wordpress.com/
https://monoskop.org/images/c/c6/Gibson_James_J_1977_1979_The_Theory_of_Affordances.pdf
https://monoskop.org/images/c/c6/Gibson_James_J_1977_1979_The_Theory_of_Affordances.pdf
https://ecs.victoria.ac.nz/foswiki/pub/Events/PLATEAU/Program/plateau2011-frey.pdf
https://ecs.victoria.ac.nz/foswiki/pub/Events/PLATEAU/Program/plateau2011-frey.pdf

Performance.” Aalto University.

Lai, Chi-Hsia, and Koray Tahiroğlu. 2012. “A Design Approach to Engage
with Audience with Wearable Musical Instruments: Sound Gloves.” In
Proceedings of New Interfaces for Music Expression (NIME).

Laurel, Brenda. 2003. Design Research. Design Research: Methods and
Perspectives. The MIT Press.

Linn, Roger. 2018. “Past Products Museum.” Accessed March 5.
http://www.rogerlinndesign.com/past-products-museum.html.

Lynch, Will. 2017. “Electronic Artists Should Make Their Own Music.”
Resident Advisor: Opinion. Resident advisor. Spring 12.
https://www.residentadvisor.net/features/2033.

Malbon, Ben. 2002. Clubbing: Dancing, Ectasy, Vitality. Routledge.

Maraš, Svetlana. 2011. “Embodied Composition: Treatment and Meaning
of Physical Object in Experimental Music and Sound Art.” Aalto University.
https://aalto.finna.fi/Record/aaltodoc.123456789_3591.

Maturana, Humberto, and Francisco Varela. 1980. Autopoiesis and
Cognition: The Realization of the Living. D. Reidel Publishing Company.

———. 1994. Autopoiesis: La Organización de Lo Vivo. Editorial
Universitaria.

McLean, Alex. 2014. “Making Programming Languages to Dance to: Live
Coding with Tidal.” In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling & Design. Interdisciplinary
Centre for Scientific Research in Music, University of Leeds.
doi:10.1145/2633638.2633647.

“Merriam-Webster Dictionary, Definition of Divergent.” 2018. Merriam-
Webster Dictionary. Accessed January 22. https://www.merriam-
webster.com/dictionary/divergent.

“MIDI Effect Tools.” 2018. cycling74. Accessed August 15.
https://docs.cycling74.com/max7/vignettes/live_midiexamples.

“New Spikes Milk Edition.” 2018. Error Instruments. Accessed June 26.
https://www.errorinstruments.com/a-48850247/welcome/new-spikes-
white-milk-edition/.

Newton-Dunn, Henry, Hiroaki H Nakano, and James Gibson. 2003. “Block
Jam: A Tangible Interface for Interactive Music.” In Proceedings of the
2003 Conference on New Interfaces for Musical Expression (NIME-03),
170–77. NIME.

Niinimäki, Matti, and Koray Tahiroğlu. 2012. “AHNE : A Novel Interface for

174

https://www.errorinstruments.com/a-48850247/welcome/new-spikes-white-milk-edition/
https://www.errorinstruments.com/a-48850247/welcome/new-spikes-white-milk-edition/
https://docs.cycling74.com/max7/vignettes/live_midiexamples
https://www.merriam-webster.com/dictionary/divergent
https://www.merriam-webster.com/dictionary/divergent
https://doi.org/10.1145/2633638.2633647
https://aalto.finna.fi/Record/aaltodoc.123456789_3591
https://www.residentadvisor.net/features/2033
http://www.rogerlinndesign.com/past-products-museum.html

Spatial Interaction.” In Proceedings of CHI ’12 Extended Abstracts on
Human Factors in Computing Systems. ACM.

“Nsynth Super.” 2018. google AI. Accessed August 15.
https://nsynthsuper.withgoogle.com/.

Octave One Boiler Room Moscow Live Set. 2014. Boiler Room.
https://www.youtube.com/watch?v=XW6lxLUBu64.

Parkinson, Adam, and Koray Tahiroğlu. 2013. “Composing Social
Interactions for an Interactive-Spatial Performance System.” In
Proceedings of the Sound and Music Computing Conference.

Pettit, Benjamin, Kevin Ford, and Pascal Redpath. 2000. Super Sharp
Shooter. Jungle Classics. Ministry Of Sound.

Pinch, Trevor, and Frank Trocco. 1988. “The Social Construction of the
Early Electronic Music Synthesizer.” Icon 4 (4). International Committee
for the History of Technology: 8–31. http://www.jstor.org/stable/23785956.

Puckette, Miller. 2006. The Theory and Technique of Electronic Music.
World Scientific Publishing Co. Pte. Ltd.
http://msp.ucsd.edu/techniques/v0.11/book.pdf.

“Reactable.” 2018. Reactable Systems SL. Accessed August 15.
http://reactable.com/.

Reynolds, Simon. 1999. Generation Extasi: Into the World of Techno and
Rave Culture. First. Routledge.

Rietveld, Hilegonda. 1995. “Pure Bliss: Intertextuality in House Music.”
http://www.snarl.org/youth/purebliss.pdf.

———. 2013. “Introduction to DJ Culture in the Mix.”

“RPG.” 2018. Noise Reap. Accessed June 26. http://noisereap.com/?
product=rpg.

Runco, Mark A. 2011. “Divergent Thinking.” In Encyclopedia of Creativity,
400–403. Academic Press.

Sánchez Carranco, Camilo. Letter. 2018. “Informal Conversation After
Calculeitor Party,” May 4.

“Squarp Pyramid 64-Track Sequencer.” 2016. Squarp Instruments. March
16. http://squarp.net/pyramid.

“Squarp Pyramid Sequencer User Guide.” 2016. Squarp Instruments.
August 26.
http://www.squarp.net/06_pic_overview/MANUAL/PYRAMID_SEQUENCER_U
SER_GUIDE_87.pdf.

175

http://www.squarp.net/06_pic_overview/MANUAL/PYRAMID_SEQUENCER_USER_GUIDE_87.pdf
http://www.squarp.net/06_pic_overview/MANUAL/PYRAMID_SEQUENCER_USER_GUIDE_87.pdf
http://squarp.net/pyramid
http://noisereap.com/?product=rpg
http://noisereap.com/?product=rpg
http://www.snarl.org/youth/purebliss.pdf
http://reactable.com/
http://msp.ucsd.edu/techniques/v0.11/book.pdf
http://www.jstor.org/stable/23785956
https://www.youtube.com/watch?v=XW6lxLUBu64
https://nsynthsuper.withgoogle.com/

Straw, Will. 1993. “The Booth, the Floor and the Wall Dance Music and
the Fear of Falling.” The Ethics of Enactment, no. 8. Public: 169–83.

Sullivan, Paul. 2013. Remixology: Tracing the Dub Diaspora. Remixology:
Tracing the Dub Diaspora. Reaktion Books.

“Summary of MIDI Messages.” 2018. midi.org. Accessed August 6.
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-
message.

Tahiroğlu, Koray, Nuno Correia, and Miguel Espada. 2013. “PESI Extended
System: In Space, on Body, with 3 Musicians.” In Proceedings of New
Interfaces for Music Expression (NIME). Daejeon + Seoul, Korea Republic.

Vahid, Frank. 2007. Digital Design. Wiley cop.

van den Oord, Aäron, Sander Dieleman, and Heiga Zen. 2016. DeepMind.
September 8. https://deepmind.com/blog/wavenet-generative-model-
raw-audio/.

Vasquez, Juan Carlos. 2016. “Defragmenting Beethoven: Sound
Appropriation as Bridge Between Classical Tradition and Electroacoustic
Music.” Aalto University.

Wahab Lafta, Abdul, and Andre Williams. 2010. Original Nuttah. Jungle
Classics. Ministry Of Sound.

Walsh, Michael. 2018. “12 DJ Tips + Techniques to Improve Your Live
Sets.” Dubspot Blog. February 8. http://blog.dubspot.com/dj-tips-
techniques-to-improve-your-live-sets-performances/.

Warner, Daniel. 2017. Live Wires. Reaktion Books.

Waters, Simon. 2007. “Performance Ecosystems: Ecological Approaches
to Musical Interaction.” EMS: Electroacoustic Music Studies Network.
http://www.ems-network.org/IMG/pdf_WatersEMS07.pdf.

Watts, Reggie. 2013. EHX Reggie Watts Explores the New 45000 Multi-
Track Looping Recorder. DJ Mag. https://www.youtube.com/watch?
v=0gKWfvd-chA.

White, Dan. 2018. “OWOW Midi Controllers: Small + Simple Design,
Advanced Controls.” Dj Techtools. June 8.
http://djtechtools.com/2015/06/06/owow-MIDI-controllers-small-simple-
design-advanced-controls/.

Witts, Richard, and Karlheinz Stockhausen. 1995. “Stockhausen Meets
the Technocrats.” The Wire Magazine, November.

You, Hsiao-chen, and Kuohsiang Chen. 2007. “The Theory of Affordances”
28 (1). Elvesier.

176

http://djtechtools.com/2015/06/06/owow-MIDI-controllers-small-simple-design-advanced-controls/
http://djtechtools.com/2015/06/06/owow-MIDI-controllers-small-simple-design-advanced-controls/
https://www.youtube.com/watch?v=0gKWfvd-chA
https://www.youtube.com/watch?v=0gKWfvd-chA
http://www.ems-network.org/IMG/pdf_WatersEMS07.pdf
http://blog.dubspot.com/dj-tips-techniques-to-improve-your-live-sets-performances/
http://blog.dubspot.com/dj-tips-techniques-to-improve-your-live-sets-performances/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message

https://www.sciencedirect.com/science/article/pii/S0142694X06000494.

177

https://www.sciencedirect.com/science/article/pii/S0142694X06000494

	1 Table of contents
	2 Abstract
	3 Introduction
	3.1 Motivation
	3.2 Theoretical framework
	3.2.1 Affordance
	3.2.2 Linear and divergent thinking in music
	3.2.3 Different cultures around live electronic music
	3.2.4 Differentiation between experimental and conventional music
	3.2.5 The concept of music solo act in electronic music

	3.3 Musical devices and their performance paradigms.
	3.3.1 Gestural-mapping based tools
	3.3.2 Sample based performance tools
	3.3.3 DAW-control based tools
	3.3.4 Modular performance tools
	3.3.5 Live-coding performance tools
	3.3.6 Conclusion

	3.4 Thesis statement

	4 Development & production
	4.1 Outline of the design process
	4.2 Definition of the design concept
	4.2.1 The three domains: environment, system and music
	4.2.2 Event-messages as a communication medium

	4.3 Fundamental level explorations
	4.3.1 Composite elements environments
	4.3.2 Finding the primary elements of the environment

	4.4 Development of Calculeitor
	4.4.1 Networks

	4.5 Exploratory iteration in the Virtual-Modular environment
	4.6 Environment futures

	5 Evaluation & discussion
	5.1 Experiences performing with Virtual-Modular
	5.1.1 Fukuoka-shi, Japan
	5.1.2 Ääniaalto, Helsinki, Finland
	5.1.3 Calculeitor party
	5.1.4 Kaiku Pheromondo

	5.2 Systems exploration
	5.2.1 Introducing a drum kit
	5.2.2 Polymeter
	5.2.3 Held note
	5.2.4 Skip-jump sequencer
	5.2.5 Patternized arpeggiator
	5.2.6 Toggling note
	5.2.7 Progressive melody
	5.2.8 Sequenced pattern routings
	5.2.9 Feedback loop

	5.3 Comparative assessment
	5.3.1 Fluidity
	5.3.2 Flexibility
	5.3.3 Originality

	6 Conclusion
	7 Appendix
	7.1 Usage tutorial: Calculeitor interface introduction
	7.1.1 Button Names
	7.1.2 General button functions in a module
	7.1.3 Super-interactor
	7.1.3.1 entering and leaving a module
	7.1.3.2 connecting and disconnecting modules
	7.1.3.3 deleting modules
	7.1.3.4 creating modules

	7.2 Usage tutorial: Your first performance
	7.3 Usage manual: event configurator
	7.3.1 Pre-configured events
	7.3.2 About events

	7.4 Usage manual: Sequencer
	7.4.1 Recording
	7.4.2 Creating and removing events
	7.4.3 Choosing the event / layer
	7.4.4 Changing the length
	7.4.4.1 Traditional length adjustment
	7.4.4.2 Folding
	7.4.4.3 non-destructive folding
	7.4.4.4 destructive folding (folding!)

	7.4.5 Paging
	7.4.5.1 Page buttons

	7.4.6 Shifting the sequence
	7.4.6.1 Compensated shift
	7.4.6.2 play-head shift

	7.4.7 Sequencer rate

	7.5 Description of various modules in the Virtual-Modular environment
	7.5.1 Preset-kit
	7.5.2 Harmonizer
	7.5.3 Mono-sequencer
	7.5.4 Sequencer
	7.5.5 Narp
	7.5.6 Arpeggiator
	7.5.7 Game of life
	7.5.8 Clock based delay
	7.5.9 Route-sequencer
	7.5.10 Chord generator
	7.5.11 Operator
	7.5.12 IO MIDI
	7.5.13 Clock generator
	7.5.14 Bouncer

	8 Bibliography & references

